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Abstract: Agriculture, an essential driver of economic expansion, is faced by the issue
of sustaining an increasing global population in the context of climatic uncertainty and
limited resources. As a result, “Smart Farming”, which uses cutting-edge artificial intelli-
gence (Al) to support autonomous decision-making, has become more popular. This article
explores how the Internet of Things (IoT), Al, machine learning (ML), remote sensing, and
variable-rate technology (VRT) work together to transform agriculture. Using sophisticated
algorithms to predict soil conditions, improving agricultural yield projections, diagnosing
water stress from sensor data, and identifying plant diseases and weeds through image
recognition, crop mapping, and Al-guided crop selection are some of the main applications
investigated. Furthermore, the precision with which VRT applies water, pesticides, and
fertilizers optimizes resource utilization, enhancing sustainability and efficiency. To effec-
tively meet the world’s food demands, this study forecasts a sustainable agricultural future
that combines Al-driven approaches with conventional methods.

Keywords: climate smart; artificial intelligence (AI); machine learning (ML); internet of
things (IoT); variable-rate technology (VRT)

1. Introduction

The rapid growth of the global population, predicted to reach 9.7 billion by 2050,
poses substantial challenges for the agricultural sector, mostly in terms of sustainability
and efficiency [1]. Agriculture has faced increasing challenges in recent years because of
the rising impacts of climate change [2]. Changes in weather patterns, greater variability,
and the advent of new pests and diseases have markedly heightened the vulnerability
of conventional farming systems [3]. Integrating advanced technologies like intelligent
automation, predictive algorithms, and connected devices into farming practices offers
promising solutions, enabling the transition to more sustainable and productive approaches.
This article discusses the complete use of these modern technologies to revolutionize agri-
culture, enhancing productivity and sustainability through precision farming and smart
agriculture initiatives. Traditional agricultural practices, while successful in the past, now
face limitations due to increased environmental and economic pressures. Sustainable agri-
culture emerges as a crucial approach, advocating for the preservation of environmental
quality, the enhancement of soil fertility, water conservation, and biodiversity protection.
This form of agriculture is not just about altering techniques, but about transforming the en-
tire food system to be sustainable in the long term [4]. The incorporation of automation and
smart devices in agriculture provides a promising path toward achieving these goals. These
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advanced and efficient techniques are commonly referred to as precision or smart farming.
Precision agriculture represents a significant shift from traditional farming methods. It
integrates advanced technologies to create a more precise and controlled form of agriculture
that conservatively uses resources like water, nutrients, and pesticides, hence decreasing
costs and environmental impacts [5]. These technologies, including Al and IoT, provide
farmers with data-driven insights that help optimize farming operations by predicting
weather conditions, analyzing soil health, and monitoring crop health in real time. Funda-
mental technologies in precision agriculture include the Global Positioning System (GPS)
and Geographic Information Systems (GISs), which allow for accurate agricultural mapping
and management. These technologies help in managing spatial variability within fields,
which can be caused by multiple factors, including soil composition, moisture levels, and
historical crop performance [6]. Yield monitors and variable-rate technology (VRT) allow
for the detailed monitoring and responsive application of inputs like fertilizers, pesticides,
and water. This is essential for reducing waste and its negative effects on the environment,
in addition to improving resource usage efficiency [7]. Al and ML are at the early stage
of transforming agriculture into a more data-driven and predictive domain. These tech-
nologies analyze huge amounts of data from satellite images, sensors, and IoT devices to
provide insights into crop health, predict yields, and optimize the distribution of resources.
Historically, the use of data in agriculture started in the 1990s with soil and yield maps.
This evolved into precise management practices, utilizing grid sampling techniques to opti-
mize soil fertility and pH levels [8]. By 2010, automation and large-scale farm equipment
integrated with GPS and autosteer technologies became widespread. These advancements
reduced operational burdens and enhanced data collection capabilities [9]. Around 2012,
“Decision Agriculture” emerged, introducing internet-connected tractors and harvesters.
These innovations enabled real-time data analysis to optimize agricultural operations [10].
During this period, digital tools and big data platforms gained popularity. They allowed
seamless data integration and analysis, improving decision-making in farm management.
The application of machine learning models illustrates the advanced capabilities of modern
agriculture. These models analyze data to predict pest attacks and diseases, enabling
farmers to take preventive measures in advance [11]. Additionally, IoT technology plays a
crucial role in precision agriculture. It connects various sensors across fields to continuously
monitor moisture, pH levels, temperature, and crop health. This robust sensor network
continuously collects data and sends it to centralize systems for processing and analysis,
enabling agricultural management to make well-informed decisions [12]. Furthermore, IoT
applications include smart irrigation systems that accurately dispense water exactly when
and where it is needed, significantly preserving water resources and enhancing sustain-
ability [13]. Beyond sensor technology, modern farm machinery incorporates modems that
are integrated with the internet, embedded within the larger framework of the Industrial
Internet. This connectivity spans various aspects of agriculture, transforming farms into
interconnected, data-driven environments. The application of this extensive data collection,
while not new, is revolutionizing global agricultural operations, shifting the paradigms
of farming practices. Moreover, agricultural decision-making is supported by advanced
data mining and management tools. Crop modeling simulations, which include data from
different sources such as soil and weather conditions, along with management practices
like fertilization, assist in estimating potential yields. These models are highly valuable for
farmers, particularly when integrated with weather prediction models. These models use
extensive datasets to accurately forecast weather patterns and precipitation. Such forecasts
are important in planning the deployment of farm equipment and labor [14]. The trend of
large data in agriculture unfolds through a structured four-part process that enhances both
learning and practical application. Farmers first upload data gathered from various sources,
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such as drones, machines, and ground sensors. The data are then combined by Agricultural
Technology Providers (ATPs), enhanced with other essential datasets, and applied with
complex algorithms for detailed analysis. Subsequently, ATPs deliver tailored solutions
and recommendations based on these analyses. Armed with these insights, farmers can
make strategic decisions to optimize the agronomic, economic, and management aspects
of their operations [15]. Despite these technological advances, the broader adoption of
recently developed technology in agriculture faces several substantial barriers. Significant
challenges must be addressed to fully harness the potential of these innovations. These
include the high costs of the technologies, the need for extensive farmer training, concerns
about data security, and the requirement for a robust technological infrastructure to support
Al and IoT integration into daily farming practices [16]. Achieving these goals requires not
only technological advances, but also supportive policies and infrastructure investments
to ensure all farmers benefit from these innovations [17]. The continued advancement
of these tools holds the potential to address pressing global challenges like food security,
sustainable practices, and climate resilience. As technology develops, it might help solve
important global issues, including worldwide warming, sustainability, and food security.
However, the successful implementation of these technologies will depend on collaborative
efforts between governments, technology providers, and the farming community to ensure
the global implementation of the advantages of technology-driven agriculture. This paper
provides a comprehensive examination of the integration of advanced technologies in
agriculture, beginning with an exploration of the historical evolution of farming practices
and the initial adoption of technological innovations. It highlights the transformative role of
remote sensing data, detailing satellite-based technologies, image preprocessing techniques,
and the application of spectral indices in areas such as pest and disease prediction, soil
health analysis, resource optimization, and automation. The discussion extends to modern
applications of artificial intelligence, machine learning, and deep learning, emphasizing
their contributions to predictive analytics, crop modeling, stress detection, and intelligent
harvesting. Additionally, the pivotal roles of the Internet of Things in precision agriculture
and variable-rate technology in smart farming are analyzed to illustrate their potential to
enhance efficiency and sustainability. This paper concludes by addressing the opportunities
and challenges associated with these advancements, offering insights into the future of
climate-smart and sustainable agriculture.

2. Methods and Results
2.1. The Evolution of Agriculture and Technology

There have been four major phases in the development of agricultural technology.
Beginning around 10,000 BC, agriculture 1.0 relied on manual labor, animal power, and
simple equipment, which resulted in ineffective operations with low productivity. The
19th-century emergence of agriculture 2.0 included mechanical equipment like harvesters
and tractors, as well as chemical inputs, which increased productivity but had drawbacks
due to poor resource usage. Through automation, robots, and computer-based systems,
agriculture 3.0 improved farming throughout the 20th and 21st centuries. However, the
comparatively low intelligence of these technologies resulted in limited precision. To
improve resource management and decision-making, agriculture 4.0 now emphasizes
smart devices and systems that integrate technology like drones, the Internet of Things,
and Al-driven analytics. However, this modern phase introduces additional concerns,
particularly in terms of data security and privacy. This timeline highlights the evolution of
agricultural methods, demonstrating the ongoing transition to intelligent and automated
solutions while addressing the inefficiencies and difficulties of each stage (Figure 1).
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Figure 1. Upgradation of agriculture.

2.1.1. Traditional Farming Practices

Traditional farming practices have been the backbone of agriculture for centuries,
focusing primarily on manual labor and rudimentary tools to cultivate crops and rear
livestock. To maintain soil fertility, these practices relied on natural resources like rainfall,
organic manure, and crop rotation techniques. Techniques such as plowing, sowing,
weeding, and harvesting were predominantly performed manually or with the aid of
animals. This reliance on physical labor and organic inputs, while effective in past eras,
limits scalability and efficiency, which are critical in today’s context of increasing population
and food demand.

2.1.2. Early Applications of Technology in Agriculture

The initial integration of technology in agriculture began with the mechanization of
basic tasks such as plowing and threshing at the beginning of 20th century. The emergence
of tractors and combine harvesters dramatically increased the scale and speed of these
operations, leading to significant gains in productivity. Synthetic pesticides and fertilizers
were developed in later decades, which increased yields even more while additionally
highlighting questions about the sustainability of the environment. During the 1970s and
1980s, the development of hydroponics and controlled environment agriculture began to
show how technology could not only increase productivity, but also conserve resources.

2.1.3. The Shift Towards DATA-Driven Agriculture

In the late 20th and early 21st centuries, however, data-driven agriculture emerged,
marking the beginning of a true revolution. GIS and GPS technologies were introduced
at this time, enabling the fine-grained mapping and analysis of farms. The current con-
cept of precision agriculture was made possible in large part by this skill. Information
technology and a variety of tools, including sensors, drones, and internet platforms, are
used in precision farming to track and improve crop growth and soil health. Data-driven
agriculture combines these technologies to create detailed maps of field variability, allowing
for the precise application of agricultural inputs, thereby reducing waste and increasing
efficiency. To manage essential natural resources effectively, precision agriculture (PA) and
environmental responsibility are critical components of modern agriculture. The “five Rs”
principle within PA emphasizes appropriate inputs, optimal timing, correct placement,
adequate quantity, and proper application methods, known as site-specific management.
This approach addresses the challenges of traditional agricultural systems exacerbated by
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global market competition. Precision agriculture operates on extensive datasets derived
from various sources to thoroughly analyze soil conditions, crop health, and field environ-
ments, making it a data-intensive field, as shown in Figure 2. For instance, soil sensors can
detect moisture and nutrient levels, adjusting irrigation and fertilization in real time. Yield
monitors on harvesters can assess crop performance across different sections of a field,
which helps in fine-tuning planting strategies and input levels for subsequent seasons.

Expert system

Agronomy
Process

Crop management

Raw data control

Plant science data

Soil science

Decision support

Figure 2. Information flow in precision agriculture.

2.2. Remote Sensing Data
2.2.1. Satellites

The process of measuring reflected and emitted radiation from a distance, usually
using satellites, to identify and track the location of physical features is known as re-
mote sensing. This procedure requires gathering information at different electromagnetic
spectrum frequencies. The launch of the Advanced Very-High-quality Radiometer meteo-
rological satellite for weather analysis in the late 1960s was a significant breakthrough in
remote sensing. In the early 1970s, the Landsat program was initiated for natural resource
monitoring and mapping. Progress in rocket technology and sensor design has resulted
in the availability of a wide variety of satellite data. These advancements in spatial and
spectral resolutions have expanded the applications of remote sensing and enabled precise
environmental monitoring and digital image analysis. However, Landsat and Sentinel
satellites play important roles in agricultural monitoring and management by providing
comprehensive and free Earth observation data [18,19]. Since 1972, NASA and the USGS
have operated the Landsat series (Landsat 1 to 9), which provide multispectral images
with a modest spatial resolution of 30 m and a 16-day return cycle. Each scene covers
an area of 185 km x 180 km (https:/ /www.usgs.gov/ (accessed on 24 December 2024)).
In addition, the Sentinel satellites, part of the European Union’s Copernicus program,
provide high-resolution data from 23 June 2015 with frequent updates (https:/ /www.esa.
int/ Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions (accessed on
24 December 2024)). The Sentinel-2 satellite offers high-frequency Earth observation with
a revisit time of roughly 5 days, enabling comprehensive surface monitoring [ESA, 2015].
Sentinel-2 is particularly well suited for precise land cover categorization, vegetation study;,
and other applications that demand fine spatial precision because of its 13 spectral bands
that cover a broad range of the electromagnetic spectrum and its spatial resolution of 10 to
60 m [20].

2.2.2. Image Pre-Processing

Geometric and radiometric corrections are essential processes for enhancing the ac-
curacy and quality of satellite imagery. All satellite images are georeferenced to correct
geometric distortions, employing control points using the global positioning system (GPS).
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Additionally, radiometric corrections are applied to reduce noise introduced by sensors,
processing, and atmospheric conditions. This process begins with converting the raw
digital number DN(A) values of the images to radiance, as described by the following
equation [21-23]:

L(A) = Grain (A) + DN (A) + Offset (M) (1)

Here, A stands for wavelength (um), Grain (A) for band-specific rescaling gain factor
[(W/m? sr um)/DN], Offset (A) for band-specific rescaling offset [W/ (m? pm sr), and
L (A) for radiance [W/(m? um sr]. The following equation was then used to calculate the
reflectance at the surface (p (A)).

PN =LA = LDPAN) xD2xm)/E(R) x cos(0)) )

p (A) is the spectral reflectance at the surface (unitless), L (DP, A) shows the spectral
radiance acquired from a dark object [W/ (m? pm sr)], D represents Earth-to-sun distance
(astronomic units), 7 is the mathematical constant 3.14159, E (A) represents mean exo-
atmospheric solar irradiance [W/ (m? pum)], and 8 shows solar zenith angle (degrees).

2.2.3. Spectral Indices in the Literature

Spectral indices are specific combinations of spectral bands used to detect and quan-
tify various surface properties. Researchers have developed several spectral indices to
assess environmental parameters, including vegetation health, salt concentration, and soil
characteristics. Each index highlights particular features, enhancing the accuracy of remote
sensing in environmental monitoring. Table 1 provides a comprehensive summary of the
important spectral indices outlined in the scientific literature.

Table 1. Commonly used spectral indices in the literature.

Types Indices Formula References
NDVI (enir — PR)/ (PNIR + PR) [24]
SAVI 2(pNir — PR)/ (PNIR + PR +1) [25]
VSSI 2pG — 5(pr + PNIR) [26]
Vegetation Indices EVI 2.5(pnir — PR)/ (PNIR + 6PR + 7-5p5 + 1) [27]
NLVI (onir? — Pr) / (PNIR? + PR) [28]
DVI PNIR — PR [29]
GRVI PNIR/ PG [30]
SIT (pr/Pnir)100 [31]
S (o % Pr)™ [32]
SE() (pG % pr)*° [33]
S1(2) (pc® + pr? + oxir?) [34]
SL@) (pc®+ PNIRZ)O'5 (35]
.. . SI(4) PswIr1/ PNIR [32]
Salinity Indices SI(7) (PR % PR) — (Pswir1®® — Pswir2®?)) 7 (P82 % PG2) + (Pswiri®® — Pswira"?))  [23]
SI(D) PB/ PR [36]
SI (1) (8 — Pr)/ (0B + PR) [36]
SI (1) PG X PR/ PB [36]
SI(IV) PR X PNIR/ PG [36]
SI(IV) 08 X PR/ PG [36]
ESRI PG>/ P8 X PSWIRI [37]
CRSI ((Pn1R % PR — PG % PB)/ (PNIR X PR + PG X pB)) " (38]
CI PswIr1 / PSWIR2 [39]
Soil Indices GI (Pswir1 — Pswirz)/ (Psvggu + Pswir2) [40]
BI (pG* + p8?) [31]
NMDI PNIR — (Pswir1 — Pswirz)/ PNIR + (Pswir1 — Pswir2) [41]

NDVI: Normalized difference vegetation index; SAVI: Soil-adjusted vegetation index; VSSI: Vegetation soil salinity
index; EVI: Enhanced vegetation index; NLVI: Non-linear vegetation index, DVI: Differential vegetation index;
GRVI: Green ratio vegetation index; SI: Salinity index; ERSI: Enhanced residues soil salinity index; CRSI: Canopy
response salinity index; CI: Clay index; GI: Gypsum index; BI: Brightness index; NMDI: Normalized multi-band
drought index.
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2.2.4. Remote Sensing Applications for Improving Agriculture Practices

Remote sensing systems play a vital role in PA applications. For instance, Sadeghi
et al. [42] applied Sentinel-2 and Landsat-8 data to improve water resource management.
In a related study, they studied the use of Landsat 8 images to monitor spatiotemporal
vegetation responses to drought conditions. Remote sensing has also been employed
for disease and pest monitoring. In this way, Sahabiev et al. [43] used information from
Sentinel-2 and Landsat-8 data to predict agrochemical properties. Moreover, remote sensing
data are mostly used to monitor crop development and yield in the precision agriculture
field [44,45]. Recently, Mirzaee and Nafchi [46] introduced an innovative methodology to
assess the nitrogen needs of crops. This approach utilized Sentinel-2 data to monitor and
detect crop responses to applied nitrogen. The methodology showed a high performance
by integrating Nitrogen-Rich Biosensor Spots (NRBSs) and remote sensing data. This
methodology has the potential to enhance crop yields, optimize nitrogen inputs, and
reduce environmental impacts.

2.3. Application of Technologies in Modern Agriculture
2.3.1. Al Applications for Predictive Analytics and Decision-Making

Artificial Intelligence (Al) in agriculture represents a transformative shift towards more
data-driven methodologies that enhance productivity and sustainability. By analyzing data
from farm operations and environmental conditions, intelligent systems provide predictive
insights and support automated decision-making. This technology helps in the optimization
of numerous agricultural operations, including planting, irrigation, harvesting, and pest
management. Table 2 lists the cutting-edge technologies used in modern farming, along
with their uses, limitations, and challenges.

Table 2. Summary of advanced technologies used in modern agriculture.

S.No Technology Applications Limitations and Challenges References
V' Limitations in real-time dataset availability
e Predictive crop modeling ¥/ Absence of dataset standards
. Pest and disease v Capturing data at close range
1. Artificial intelligence (AI) prediction Y Recognizing small symptoms [47-50]
. Soil health analysis v' Differences in image quality and lighting
Automated machinery V' Disease development and similarities across classes
v' Computational difficulties with big datasets
v' Combining multimodal data
V' Model failures are caused by small datasets; varied,
real-world field images are crucial
Crop yield prediction V' Accuracy and runtime are impacted by the size and
e Disease and pest type of input (e.g., background removal, vegetation
detection indices)
e  Weed identification and v' Costly, time-consuming, and specialized;
Deep learning (DL) and management unsupervised techniques require investigation
5 machine learning (ML) e Precision irrigation V' Accuracy and inference time are traded off; [51,52]
models management site-specific datasets require retraining !
Nutrient management V' High processing overhead and reliance on
e  Crop variety selection hyperparameter adjustment
. Intelligent harvesting v' Lightweight models and edge devices are attractive

alternatives to models, which are frequently
impractical

v Farmer knowledge is required; automation may be
possible with IoT and reinforcement learning

and optimization:
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Table 2. Cont.

S.No Technology Applications Limitations and Challenges References
e  Irrigation monitoring V' The gathering, storing, processing, and transfer of
and control data pose security threats to IoT-based agriculture
. Soil monitoring V' Signal jamming causes inefficiencies and economic
e  Temperature and losses by interfering with communication, GPS, and
humidity monitoring remote monitoring
3 Internet of thing (IoT) . Anlmal monitoring and V' Decision-making, accuracy, and data dependability [53,54]
tracking are all harmed by node capture and outages
. Water monitoring and v Attacks on data transmission lead to surveillance,
controlling disease theft, or poor farming decisions
monitoring V' For prevention, strong procedures like encryption,
e Air monitoring authentication, monitoring, and system updates are
. Fertilization monitoring important
V' High prices, small farm sizes, technological
constraints, insufficient technical assistance, and a
lack of training are some of the obstacles to VRT
adoption
Variable-rate technology e  Variable-rate fertilization v Younger farmers are more likely .than older farmers
4 (VRT): map-based and e Variable-rate seeding to use VRTs, and adoption decisions are based on [55]

sensor-based techniques

farm economics; farmers place a higher priority on
profitability

v" While higher non-farm income boosts VRT
purchases, adoption is slowed by financial
limitations, profit uncertainty, and expensive
starting expenditures

e  Variable-rate irrigation:

»  Predictive crop modeling

Intelligent algorithms combine real-time environmental factors and historical data to
estimate crop yields, growth patterns, and the optimal periods for seeding and harvest.
These models benefit farmers by making informed choices by predicting market needs
and weather circumstances. With the use of advanced algorithms like neural networks,
decision trees, and support vector machines, contemporary predictive crop models analyze
a wide range of data sources, such as weather, soil conditions, crop types, and historical
yield data (Figure 3). The explained models’ performance assessment parameters and their
descriptions are listed in Table 3.

Crop data collection

I\ Preprocessing )

Support vector machine (SVM)
K-Nearest Neighbors

on
Decision Tree (DT) =
Random Forest (RF) .§
Artificial Neural Network (ANN) [:

Native Bayes
Long short-term memory (LSTM)

AI Modules

Testing and Decision (Based on New Crop
Evaluation best AT model) Data

Figure 3. Al-based crop analysis and prediction.
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Table 3. Performance assessment mathematical parameters of AI models and their descriptions.

Model Performance Analysis Parameter Description References
Accuracy = % . - .
Support Vector Machine where TP = True Positives, TN = True SVM finds the hyperplane t}}at maximizes the margin
. L. between classes. It uses hinge loss to discard the [56]
(SVM) Negatives, FP = False Positives, . Lo
. incorrect classifications.
FN = False Negatives
. . KNN uses its neighbors” approval rating to classify a
K Near(eli’;ql\li?)lghbors Accuracy = % data point. Performance is sFrongly impacted by KNN [57]
selection.
.. d C 2
Decision Tree (DT) Gini Index =1 — ;P To reduce the impurity (such as Gini or entropy), (58]
where p is the proportion of samples decision trees divide data according to feature thresholds
belonging to class i
Accuracy — L i Accurac Random Forest combines predictions using an ensemble
Random Forest (RF) Y= = Y of decision trees to increase prediction accuracy and [59]
where T is the number of trees decrease overfitting
o An ANN uses layers of neurons to map inputs to
Artificial ?Eﬁﬁ; Network Accuracy = % outputs, opt.imizing weighfs by backpropagation with a [60]
differentiable loss function, such as cross-entropy
Posterior Probability, P(y|X) = Naive Bayes models eliminate complicated joint
Naive Baves PX)P(X|y)P(y) probability computations; they simplify calculations and [61]
y P(yi|Xi): Posterior probability of the i-th  are especially useful when the independence condition is
data point being in class yi roughly valid
1 N . A2
Long Short-Term Memor MSE = Ni;(yl ~ i) Temporal dependencies in sequential data are captured
& y N: Total number of observations in the by LSTM, a recurrent neural network that utilizes gates [62]

(LSTM)

dataset. i: Index for individual data (forget, input, and output)

points. yi: True label. §i: Predicted value

These models not only forecast expected yields, but also suggest optimal planting
and harvesting dates based on local soil and climatic conditions. Notable developments in
this discipline are highlighted by in the literature. For instance, Kheir et al. [63] showed
that convolutional neural networks were significantly more accurate than conventional
techniques for predicting wheat yields in the Midwestern United States. Another example
by Griffin et al. [64] showed that using ensemble learning to combine multiple predictive
models could increase the reliability of predictions across varying environmental conditions.
However, predictive crop models face several challenges that can impact their accuracy
and deployment. The quality and volume of available data are crucial; data deficiencies,
particularly in underdeveloped agricultural regions, pose significant obstacles. Addition-
ally, these models require regular updates and calibration to stay effective amidst changing
climatic conditions and agricultural practices [65].

Predictive crop modeling is expected to evolve with the integration of more detailed
environmental data and the enhanced interpretability of Al models. The future may see
the incorporation of high-resolution satellite imagery and advanced sensors to gather
detailed soil and microclimate data. There is also an increasing interest in developing
hybrid models that combine Al with traditional agronomic knowledge to improve decision-
making processes [66,67].

»  Pest and disease prediction

Intelligent systems enable advanced agricultural practices by identifying and removing
weeds, predicting plant disease symptoms, and recommending effective pest management
strategies. They help with irrigation scheduling, fertilizer delivery timing, and anticipating
the best combinations of agronomic inputs. These technologies can also anticipate the
optimal time for harvesting and automate the process [68]. Predictive analytics has the
potential to completely transform the agriculture sector, with more data being collected
and analyzed than ever before. Price predictions, market demand analysis, and optimal
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planting and harvesting schedules are just a few of the major issues that can be tackled
using smart tools [69]. Smart technologies also assist in sorting produce by ripeness levels
before they reach the market, improving quality control. Advanced field management
leverages high-resolution imagery from drones and aerial devices for real-time predictions,
helping create field and feed maps that indicate where crops need adjustments in pesticide,
fertilizer, or water application. Cognitive systems provide valuable insights into seed
selection, weather forecasts, soil conditions, and pest activity tailored to each location,
enhancing farming precision [70].

= Soil health analysis

In agriculture, intelligent systems substantially improve soil health assessments by
utilizing data from several sources, such as satellite imaging, drones, and sensors buried
in the ground. To find nutritional shortfalls and soil flaws, these technologies analyze a
variety of data, such as temperature, moisture content, nutrient content, soil conditions, and
crop performance. This enables customized irrigation and fertilization plans that enhance
crop health and fertility while directing exact soil management techniques. By modifying
treatments in response to real-time pest activity, machine learning algorithms significantly
contribute to the optimization of resource utilization, including that of pesticides and
herbicides, hence improving sustainability and productivity. These systems also forecast
how global disasters and environmental changes will affect agriculture, facilitating efficient
resource management and crisis response. In addition to streamlining farming operations,
this all-encompassing strategy supports long-term sustainability objectives [71-74].

= Resource optimization

To recognize patterns of excessive use and suggest optimization techniques, intelligent
systems examine data on resource allocation and consumption. Preventive measures,
such as keeping an eye on animal health and equipment performance, lower the cost
of veterinarian care and equipment maintenance. Profitability naturally rises as these
technologies reduce expenses across agricultural businesses and boost yields without
requiring more resources. The goal of sustainable agriculture is to find an approach to meet
the world’s food and textile requirements without depleting available resources or leaving
nothing for future generations. By leveraging intelligent systems, farmers can identify
sustainable resource usage strategies to prevent water shortages and soil damage. With its
various subfields and applications, Al offers agricultural solutions through programs and
algorithms of varying complexity [75,76].

= Automated machinery

A promising solution to the labor shortage in agriculture may be the implementation
of intelligent systems, autonomous tractors, and IoT. Because these technologies increase
accuracy and decrease errors, they can also save expenses. At the intersection of these
systems, including self-driving tractors, is precision farming. Furthermore, robots are
a rapidly growing form of technology that can handle labor-intensive jobs like cutting
lettuce and harvesting fruits and vegetables. Farmworkers have several advantages over
robots. They may operate for longer periods of time, are less prone to errors, and are
more accurate. Despite being data-rich, agriculture is difficult to analyze because of the
complexity of the real world. Innovations in Al have the power to completely change the
market by offering predictive analytics and deep data insights. Staying aware of the most
recent developments in their sector may be very challenging for any organization. Al will
speed up and improve the decision-making process for enterprises. Combining data and
machine learning approaches can help organizations make better predictions and navigate
a complex world.
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2.3.2. Enhancing Agricultural Efficiency with ML and DL Models

Deep learning and machine learning are subfields of artificial intelligence that focus
on developing systems that can recognize patterns, learn from data, and form opinions
with minimal human intervention. ML processes data, learns from it, and makes decisions
based on algorithms. Deep learning, which draws inspiration from neural networks found
in the brain, excels at processing massive amounts of data. Through image recognition
technologies, it is frequently used to identify trends and abnormalities in crop development,
forecast insect outbreaks, and identify plant illnesses.

»  Soil properties and weather prediction

Predicting soil properties is crucial in agriculture as it influences numerous decisions,
including crop selection, land preparation, and fertilizer application. Since these charac-
teristics are closely related to the local climate and geography;, it is essential to accurately
estimate them in order to implement efficient agricultural methods. Human activities
notably impact soil quality, affecting the ability to cultivate crops efficiently [77]. Soil
health is determined by several essential nutrients, listed as 17 key elements that are cru-
cial for plant growth [78]. Electric and electromagnetic sensors are the main tools used
to measure the availability of these nutrients, which helps farmers make well-informed
decisions about the best crop production practices based on the unique nutritional profile
of their soil. An Extreme Learning Machine (ELM)-based regression model was used in
a noteworthy work [79] to forecast soil surface humidity. Using polarimetric Radarsat-2
data that had been pre-processed using the SNAP toolkit, this investigation was carried
out on two terrains at Dicle University. When evaluated with several kernel functions,
the ELM model showed excellent accuracy, especially when using the “sine’ kernel, which
had the lowest root mean square error (RMSE) at 2.19%. Chowdary et al. [80] used soft
sensors based on ELM to evaluate the composition of nutrient solutions in the context of
soilless agriculture, which is becoming more and more popular as an innovative agricul-
tural technique. This approach is critical, as the performance of soilless cultivation heavily
relies on accurately monitoring variables like pH, temperature, and nutrient concentrations.
The study achieved commendable RMSE values for predictions of sulfate and phosphate
concentrations in nutrient solutions. Park et al. [81] used machine learning methods to
improve soil moisture prediction with MODIS satellite data. By using a combination of
Random Forest (RF) and Cubist algorithms, they increased soil moisture data accuracy,
outperforming conventional statistical techniques. This method demonstrated a high
coefficient of determination (R2) of 0.96 and an RMSE of 0.06, significantly better than
results from ordinary least squares techniques. Reda et al. [82] utilized machine learning
to estimate soil organic carbon (SOC) and total nitrogen (TN) in Moroccan agricultural
lands using near-infrared spectroscopy, a method quicker and less resource-intensive than
traditional chemical analyses. The ensemble learning models used in this study showed
superior performance, with an R2 of 0.96 for SOC, underscoring the effectiveness of ML in
predicting essential soil properties. Morellos et al. [83] further showed how well machine
learning predicts soil characteristics using visible and infrared spectroscopy. The Least
Square Support Vector Machine (LS-SVM) and Cubist algorithms performed better in their
investigation than conventional multivariate techniques, providing accurate SOC, TN, and
moisture content predictions. Using information from portable X-ray fluorescence (pXRF)
spectrometry, Andrade et al. [84] investigated many machine learning models to forecast
soil characteristics. According to their research, the most accurate forecasts for TN, soil or-
ganic matter, and cation exchange capacity were made using RF algorithms. Deiss et al. [85]
demonstrated that tuning support vector machines (SVMs) for soil property predictions
using mid-infrared spectroscopy data could lead to significant improvements in accuracy
across multiple soil parameters, such as clay, sand, pH, and SOC. Finally, addressing the
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vital aspect of soil moisture, Stamenkovic et al. [86] and Song et al. [87] used machine
learning algorithms to reliably forecast moisture content from hyperspectral pictures that
were detected remotely. These models, including support vector regression and deep
learning-based cellular automata, showcased high performance, offering practical solutions
for precise irrigation scheduling. Together, these studies highlight how machine learning
and deep learning technologies are revolutionizing agricultural soil property monitoring
and prediction, enabling more productive and sustainable farming methods.

»  Crop yield prediction

Farmers must estimate crop yields in order to boost agricultural output and efficiency.
Weather patterns (temperature, humidity, rainfall, and sunlight hours), fertilizers, soil
type and quality, pH level, and harvesting plans are some of the variables that affect crop
yield [88]. This procedure emphasizes the significance of early anomaly identification to
minimize large yield losses; the process takes the form of a feedback control system in
which corrective measures are implemented upon identifying setbacks in crop growth.
Advanced ML algorithms have been pivotal in enhancing crop yield predictions. For
instance, Peng et al. [89] utilized Solar-Induced Chlorophyll Fluorescence (SIF) data from
remote-sensed satellites to train ML models (SVM, ANN, RF) to predict maize and soybean
yields in the U.S. Midwest. Their findings demonstrated the superiority of these non-linear
algorithms over LASSO and ridge regression in terms of prediction accuracy. Similarly,
Khaki et al. [90] employed deep neural networks (DNN) to predict hybrid maize yield
across various locations between 2008 and 2016 in the United States and Canada, achieving
a low RMSE and highlighting the impact of genotype, weather, and soil properties on
yield accuracy. Environmental variables have a big impact on how accurate crop output
forecasts are, as demonstrated by simulation results from various studies. In regions like
Africa, where field data are limited, remotely sensed datasets are crucial for monitoring
and predicting agricultural outputs. Cai Yaping et al. [91] used satellite and climate data
to predict Australia’s wheat yields, showing that climate data provide unique insights
compared to satellite data, with an R"2 around 0.75. The timing of crop planting is another
critical factor affecting productivity and financial outcomes. Gumuscu et al. [92] examined
how well ML algorithms (kNN, SVM, and decision trees) predicted the best times to plant
wheat in Turkey using climatic data and feature selection using genetic algorithms. Their
study indicated that kNN algorithms robustly predict wheat planting dates. Deep learning
techniques are also being applied to yield prediction in other crops. Nevavuori et al. [93]
used a CNN trained on NDVI and RGB datasets from UAV-mounted cameras for wheat
and barley yield estimation in Finland, with the RGB dataset yielding the most accurate
results. In the context of fruit production, Koirala et al. [94] reviewed the application of
CNN:s for fruit detection and yield estimation, highlighting the utility of CNNs in extracting
useful features from images for object detection and yield prediction. Kuwata et al. [95]
applied DL models, specifically support vector regression (SVR), to estimate corn yields
in Illinois using a combination of 5-year moving averages of corn crop yields, enhanced
vegetation indices from MODIS satellite data, and historical climate data. Their model
demonstrated a substantial correlation coefficient and RMSE, validated through 10-fold
cross-validation. Similarly, Kulkarni et al. [96] used a recurrent neural network (RNN) to
predict rice crop yields by looking at several activation functions to improve prediction
accuracy and analyzing soil characteristics, nutrient measurements, and historical rainfall
data spanning 31 years. These studies collectively demonstrate the advancements in ML
and DL technologies in accurately predicting crop yields, which is critical for optimizing
agricultural practices and enhancing food security globally.
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n Biotic and abiotic stress detection

The control of biotic (diseases and pests) and abiotic (environmental) pressures in
agriculture is greatly improved by the application of ML and L. This methodology begins
with comprehensive data collection, utilizing high-resolution images from drones and
satellites, along with sensor data from IoT devices in fields, to capture real-time envi-
ronmental conditions and historical agronomic data. These datasets are processed and
analyzed using advanced algorithms: CNNs for image analysis to detect issues like weed
infestation or disease symptoms, and RNNs to handle time-series data from sensors for
environmental pattern recognition. Integrated multimodal data are then employed to
train more complex models, such as Multi-Layer Perceptron (MLP) or hybrid models,
enabling predictive analytics. These analytics power decision support systems that forecast
potential biotic and abiotic stresses and suggest optimal agricultural practices, including
the precise timing and combination of fertilizers and pesticides, and efficient irrigation
schedules. Learning models can classify a variety of biotic and abiotic stresses, using more
than 25,000 photos. This methodology offers excellent dependability and adaptation to
specific illumination levels, enabling accurate stress management in real-world scenar-
ios. Wulandhari et al. [97] developed a deep convolutional neural network to manage
crop health issues using crop images. A hybrid network that employed a transfer learn-
ing method known as the Inception-Resnet architecture was trained using the ImageNet
dataset. Experiments were then carried out to adjust hyperparameters like learning rate and
epoch count. During training and testing, the authors’ accuracy rates were 96% and 86%,
respectively. Using CNN and image segmentation, Watchareeruetai et al. [98] presented a
novel approach for detecting and assessing plant nutritional deficits. A dataset consisting
of 3000 leaf images was collected and used for experimentation. An environment with
real-time nutrition management was used to validate the results. In Ghosal et al. [99], using
destructive sampling, soybean leaves exhibiting signs of deficiencies such as potassium
and iron were physically gathered in the field, resulting in a dataset of 25,000 labeled leaf
images. Using a CNN classifier, the researchers achieved a high 94% accuracy in symptom
identification. Their machine vision-based approach offers a swift and accurate method for
detecting early stress symptoms in agriculture and is resilient to variations in illumination
and suitable for large-scale applications. Robotic platforms have also been used to imple-
ment ML algorithms for plant disease identification. For example, an Unmanned Aerial
Vehicle (UAV) was used to identify citrus greening, and the best model was identified by
applying popular ML techniques such K-Nearest Neighbor, linear SVM, coarse gaussian
SVM, standard gaussian SVM, and basic and advanced decision trees. This paper addresses
research vacuum by comparing the performance of ML models with popular DL models for
the classification of healthy and sick leaves, such as AlexNet, ResNet-50, VGG-16, etc. [100].
In a strawberry greenhouse, a mobile robot was utilized to identify illness using an SVM
algorithm; the findings demonstrated a considerably lower prediction error [101]. Another
study classified healthy and diseased vine leaves using one-class classifiers and local binary
patterns [102]. Additionally, deep learning models automate and optimize harvesting pro-
cesses, predict the best times for harvest, and facilitate post-harvest produce sorting based
on maturity, thus enhancing market readiness and reducing losses. Real-time monitoring
and the creation of field and feed maps allow for precise, variable interventions across
different field zones, ensuring resources are utilized effectively. The methodology also
incorporates cognitive solutions that analyze soil state, weather forecasts, and potential pest
threats to provide actionable insights for crop management. This approach is continuously
refined through feedback mechanisms and iterative improvements, with systems designed
to adapt and learn from new data and farmer feedback to enhance prediction accuracy and
model relevance. Sambasivam et al. [103] demonstrated the use of CNN models to detect
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diseases in cassava crops using a pre-processed dataset of 10,000 labeled images, achieving
a high accuracy rate. Similarly, Ramcharan et al. [104] employed deep CNNs to identify
diseases and pests in cassava using a dataset of 11,670 images, with significant efficiency
validated by confusion matrix metrics. Mohanty et al. [105] detected crop diseases using
deep CNN s trained on a large dataset of smartphone-captured images of diseased and
healthy plant leaves, achieving high accuracy and F1 scores. Amara et al. [106] applied a
CNN architecture based on LeNet to recognize disease in banana leaves, achieving notable
F1 scores, while Dos Santos ferreira et al. [107] used a CNN for weed identification in
soybean crops with high accuracy, using images captured by drones and processed via
the SLIC algorithm. Through reliable data annotation and model selection, deep learning
improves the accuracy and efficiency of mixed-seed detection and counting. The YOLOvV5
model was trained using datasets of five different seed types that were annotated and
enhanced using a Canon camera and the Robo-flow platform. The model achieved 96.96%
recall, 94.81% precision, and 68.62% mAP [108]. This method simplifies the counting of
seeds and has potential uses in precision farming and yield estimation in the future. A ma-
chine learning-based device using spectral data (notably at 680 and 760 nm) and a decision
tree classifier accurately detected and estimated groundnut bud necrosis virus severity in
tomatoes with over 93% accuracy. Integrating a spectral sensor and display, the device pro-
vided real-time severity assessments, enabling timely disease management and supporting
crop health [109]. These studies highlight the effectiveness of ML and DL in enhancing
disease detection, and environmental management in agriculture, significantly reducing
the economic and environmental costs associated with traditional farming practices. This
approach greatly increases productivity, environmental sustainability, and economic via-
bility while simultaneously addressing the pressing demands of crop management and
advancing sustainable agriculture practices through precision farming techniques.

»  Intelligent harvesting techniques

By integrating cutting-edge technologies like smart sensors, robotics, UAVs, IoT de-
vices, and computer vision techniques based on ML and DL models, intelligent harvesting
techniques are transforming agriculture by lowering human labor [110]. Compared to
conventional techniques, these intelligent systems offer numerous benefits, such as lower
labor costs, improved crop yield accuracy, and more economical production. These sys-
tems not only optimize the harvesting process, but also improve the quality and timing of
harvests, ensuring crops are picked at their peak [111-113]. Labor shortages in agriculture,
particularly noted in Japan, have accelerated the adoption of robotic harvesting systems.
For example, Sakai et al. [114] developed a machine vision-based robot for asparagus har-
vesting that operates three times faster than human labor, using laser sensors to accurately
measure 3D distances for effective harvesting. Similar advancements have been made
for other crops; Monta and Namba [115,116] explored laser sensors and color cameras for
tomato and strawberry harvesting, respectively, achieving significant efficiencies in crop
handling and processing. Zhang et al. [117] utilized Region-CNN for object detection in
apple orchards, aiding in precise harvest timing decisions. The application of spectral
and thermal imaging also supports the detection and management of fruit and vegetable
harvests ([118,119]). Advanced ML techniques have been specifically tailored for various
harvesting challenges. Applied principal component analysis can be used to distinguish
between mechanically harvested and unharvested apples, enhancing the mechanical har-
vesting process. Similarly, Pise and Upadhye [120] implemented Naive Bayes and SVM
algorithms for grading harvested mangoes, enhancing profitability by ensuring quality and
maturity classification. The effectiveness of these intelligent systems is further exemplified
in the specialized harvesting robots tested and developed for real-field conditions. Robots
developed for tomato harvesting have utilized X-means clustering, a derivation of the
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K-means method, to improve maturity recognition [121]. An SVM with a radial basis
function (RBF) was successfully applied for apple recognition, demonstrating the feasibility
of these systems in actual farm settings [122]. Moreover, ongoing research continues to
explore and refine ML models for agricultural applications. Studies have compared various
ML algorithms to optimize fruit recognition and classification processes. For instance, the
use of a tractor system equipped with an SVM and Viewpoint Feature Histogram (VFH)
effectively localized and detected broccoli, showcasing significant improvements when
temporal filtering was incorporated [123]. These intelligent harvesting techniques enable
precise crop monitoring, optimal harvesting timing, and efficient post-harvest process-
ing, fundamentally transforming the agricultural landscape towards greater sustainability
and productivity.

2.3.3. Internet of Things (IoT) in Precision Agriculture

The major goals of different IoT-based agricultural applications in specialized fields
include tracking, monitoring, and control. These applications fall into the following major
categories: Water Monitoring and Control (7%), Disease Monitoring (5%), Air Monitoring
(5%), Fertilization Monitoring (4%), Precision Farming (16%), Soil Monitoring (13%), Tem-
perature Monitoring (12%), Humidity Monitoring (11%), Animal Monitoring and Tracking
(11%), and Irrigation Monitoring and Control (16%) [124] (Figure 4). Multiple agricultural
operations are improved when connected technologies, such as sensors and UAVs, are inte-
grated into agriculture. Agricultural ecosystems may now be continuously monitored and
managed thanks to this technology, which lessens the need for direct human intervention
outside of crises. To maintain ideal criteria, including soil characteristics, crop health, and
environmental conditions, precision agriculture makes use of these interconnected systems.
Data from sensors positioned across fields is transferred to a cloud for processing, enabling
remote monitoring and control. By ensuring accuracy in the application of herbicides,
fertilizers, and water, this technique helps avoid problems like animal encroachment in
fields. Both digital and analogue sensors are essential for efficient operation; digital sen-
sors analyze data more quickly and accurately by interacting directly with cloud systems.
Common sensors in agriculture include soil moisture sensors, electrochemical sensors, and
optical sensors, each contributing to a comprehensive understanding of field conditions.

A central location coordinates data from geographically dispersed sensors that monitor
environmental variables as part of wireless sensor networks (WSNs). These data are
then processed and analyzed in the cloud, employing intelligent algorithms to enhance
decision-making in real time. The integration of artificial intelligence with WSN allows for
sophisticated monitoring and intelligent decision-making. Huge data collection from IoT
systems is essential for developing big data analytics in agriculture. These data contribute
to making informed choices that boost yield and prevent waste. The data collected are
analyzed to determine the optimal amounts of agricultural inputs required, thus enhancing
the efficiency and sustainability of farming operations. These systems use algorithms
like RNN and LSTM to ensure the efficient operation of sensors, extending their runtime
significantly. Recent advancements include Al-driven sensor networks that classify land
suitability post-harvest and improve the performance and energy consumption of sensor
nodes. Better management of the sensor network is the outcome of intelligent processing
of the data produced by nodes. After each cultivation, the authors of [125] classified land
as appropriate, more suitable, somewhat suitable, or unsuitable using an Al-driven sensor
network. In [126], the authors created a ZigBee module and Arduino microcontroller to
create a power-efficient WSN that could monitor and regulate key factors that affect crop
development, including soil and weather, in Florida, USA. The authors of [127] combine
sensor nodes with Al systems to optimize each node’s performance and data transmission,
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thereby lowering the nodes” power consumption. Using a Li-ion battery, an RNN-based
Long-Short-Term (LSTM) network was developed that ensures 180 days of autonomous
operation, extending the life of a single sensor. The suggested approach keeps an ongoing
eye on the dynamics of plant leaf growth. Shadrin et al. [128] describe an autonomous
system that uses an Internet of Things-based cloud platform and low-power sensor nodes
to estimate the amount of phosphorus in soil using artificial neural networks. A dynamic
power management system is incorporated by the authors to ensure a balance between
energy usage and estimation accuracy. The authors provide a GA-optimized WSN for
applications in precision agriculture in [129]. Furthermore, intelligent systems like those
described by [130], which employ IoT and smart image recognition to detect crop maturity,
are instrumental in enhancing decision-making processes in agriculture.
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Figure 4. IoT-based monitoring systems in precision farming.

Therefore, we conclude that combining artificial intelligence with WSN and IoT is
essential to ensuring the highest possible crop output. IoT plays a pivotal role in modern
agriculture, offering solutions that range from basic monitoring to advanced predictive
analytics. By leveraging IoT, precision agriculture can achieve higher productivity and
sustainability, aligning with the goals of agriculture 4.0. Despite the benefits, the deploy-
ment of IoT in agriculture faces challenges such as data privacy, network security, and
the integration of various IoT devices and platforms. Future research should be directed
toward overcoming these challenges, enhancing the interoperability of IoT systems, and
developing more robust models for real-time predictive analytics in agriculture.



AgriEngineering 2025, 7, 89

17 of 30

Mapped data

2.3.4. Variable-Rate Technology (VRT) in Smart Farming

In theory, precision farming addresses differences in soil type, organic matter, nutrient
needs, yield, and pests across a field. Variable treatments are commonly applied using
map-based and sensor-based approaches. A map-based variable-rate application system
uses a pre-made map, also known as a prescription map, to modify the application rate.
The input concentration is adjusted as the applicator passes across the field, using the field
position from a GPS receiver and a prescription map of the intended rate. Real-time data
are utilized in the sensor-based technique to regulate the dosage and location of a particular
therapy [131].

s Map-Based Technologies for Variable-Rate Application

Using the field position from a GPS receiver and a prescription map of the desired rate,
the map-based variable e-rate application system modifies the application rate based on a
preset computer map, also referred to as a prescription map; the amount of input varies as
the applicator moves through the field. A single element or a mix of factors, including soil
type, color, texture, topography, crop yield, and field scouting data, are used to determine
the required application rate and the remotely sensed indices. In any case, users keep
control over the application rate. The advantage of this method is that the quantities are
predetermined and, therefore, there would be no fear of running out or mixing excess
products, as demonstrated in Figure 5. However, one of the drawbacks is that if the weather
changes or the temperature varies, there would be variation in soil characteristics, leading
to the misplacing of inputs, which implies the need for the digital map to be dynamic [132].
Map-based control systems have been developed into commercially available products,
such as 20/20 SeedSense (Manufacturer: Precision Planting LLC) is located in Wamego,
Kansas and Rate Controller 2000 [133], as shown in Figure 6.
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Figure 5. Map-based variable-rate application.
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Figure 6. Map-based variable-rate controller: (a) 20/20 SeedSense (Precision Planting); (b) Rate
Controller 2000. Sensor-based technologies for variable-rate applications.

Sensor-based VRAs (Figure 7) operate without the need for a map or a positioning
system. The applicator’s sensors measure crops or soil variables while in motion. The
precise input requirements of the soil or plants are determined by a control system using
this continuous flow of data. After that, the data are passed from the control system to a sub-
controller, which sends the input to the precise spot detected by the sensor [134,135]. Sensor
measurements, such as plant reflectance indices, can be used to reduce the complexity of
data; the popular normalized difference vegetative index (NDVI) is one example that is
based on crop reflectance in the red and near-infrared (NIR) bands. Commercially accessible
devices made using sensor-based systems include the John Deere smart sprayer, which
uses mobile video sensors to identify weeds or nutrient stress and administer varying rates
of application, as shown in Figure 8. This method does not necessarily require a positioning
system or extensive pre-application data analysis. However, recording and geo-referencing
sensor data enables future site-specific crop management, creating prescription maps for
subsequent operations and providing an “as applied” record for growers.
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Figure 7. Sensor-based VRT.
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Figure 8. Sensor-based variable-rate technology for site-specific input management: (a) adaptive
control system applying precise fertilizer rates; (b) real-time crop monitoring.

Variable-rate technology (VRT) in agriculture employs real-time data from sensor-
based systems to tailor fertilizer applications precisely to the needs of specific crop locations.
This technique is critical in managing nutrient application dynamically, optimizing the
usage based on real-time observations of soil and plant conditions. Sensors like Crop
Circle and Green Seeker play a pivotal role, measuring plant canopy reflectance in various
spectral bands to compute vegetation indices such as the normalized difference vegetation
index (NDVI). The NDVI, the most commonly used index, is calculated by comparing the
reflectance in the near-infrared and red bands; this helps to determine plant health and
thus the required fertilizer dosage [136,137].

These sensor-based systems ensure that nutrients are applied efficiently, avoiding
both under- and over-fertilization, Figure 8. The system’s ability to adjust application
rates in real time prevents wastage and environmental damage while improving crop yield
and quality. For example, nitrogen management adjusts urea application based on the
greenness of crop leaves, targeting specific zones within a field that display varying nutrient
needs [138]. Accurate nitrogen measurement is facilitated by tools such as the SPAD meter,
which directly assesses nitrogen concentration in the canopy, guiding fertilizer application
to optimize plant growth [139,140]. Moreover, the precise application is dependent on
the system’s response time, which must be minimized to avoid delays that could affect
the applicator’s accuracy and, consequently, crop yield [141]. Variable-rate applications
are also dependent on sophisticated management strategies. The Oklahoma (OK) and
Missouri (MO) methods illustrate two different approaches to nitrogen application based
on NDVI data. The OK method integrates more complex data, including yield potential
and growth conditions, directly into an on-board computer system, facilitating precise
nutrient application with minimal user intervention [142]. These advanced VRT system:s,
which combine sensor data with real-time processing and feedback loops, are essential for
modern precision agriculture. They allow farmers to apply the correct amount of nutrients
at the right time and place, enhancing crop management efficiency, reducing environmental
impact, and increasing farm profitability. Despite its advantages, the adoption of VRT is
hindered by high initial costs and the complexity of its operational technologies, which can
be daunting for farmers [143,144]. Furthermore, this technology’s reliance on sophisticated
hardware and data management systems necessitates a large initial outlay of funds, as
well as training, which further hinders its general adoption. Future VRT research will
concentrate on combining it with cutting-edge developments like machine learning and
connected gadgets. It is projected that this integration will increase the accuracy and
effectiveness of VRT applications, which could reduce expenses and make them more
accessible to a larger group of farmers [145,146]. These developments could improve crop
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management and resource utilization by streamlining decision-making in VRT through
improved automation and data analysis. In 2024, an estimated 47.2 million acres in the
United States was planted with winter wheat, 91.5 million acres with corn, and 86.4 million
acres with soybean [USDA, NASS, Survey 2024]. However, the adoption of variable-rate
technology (VRT) for these crops remains limited. In 2016, VRT was adopted on 37.4%
(33.6 million acres) of corn-planted acres, followed by 18.8% (6.39 million acres) for winter
wheat in 2017, and 25.3% (8.5 million acres) for soybean in 2018, as shown in Figure 9.
Despite its potential to reduce costs, VRT adoption is still not widespread across U.S.
farms [147,148]. Adoption rates tend to be higher among large farms, with lower uptake
among smaller farms, indicating potential benefits of scale [149]. Using linear regression
to estimate VRT adoption for 2024, the projected adoption rates are 44% for corn, 26% for
soybean, and 22% for wheat.

Adoption Percentage

Adoption rate of Variable-Rate Technology

80

70

60

50

40

30

20

10

0
0 [} (=] - ol o hog v O g 0 [} o — ol on <t v O - 0 (o)} o — ol on <t
A & O O O O O O O O O O ™ ™ ™ = = = = = = =~ & o o o a4
QA O O O O © O © O © O © O © O © O ©o ©o ©o ©o ©o ©o ©o ©o o o
- - ol ol o ol ol ol ol ol ol o ol ol o ol ol o o ol ol ol ol ol ol ol ol

=8—VRT Adoption % on Corn VRT Adoption % on Soybean VRT Adoption % on Wheat

Figure 9. The adoption rate of variable-rate technology for corn, soybean, and wheat.

Corn is high in nitrogen and in demand [150]; it stands to gain substantially from the
targeted delivery of nitrogen fertilizers. This precision approach enhances corn growth
more effectively than in other crops like beans [151] or wheat. Consequently, corn growers
are likely to experience more pronounced benefits, including improved yields and resource
efficiency, from adopting variable-rate technology.

3. Conclusions

Modern technologies like Al, ML, DL, and the Internet of Things have revolutionized
farming methods through precision agriculture. This integration of cutting-edge tech-
nologies aims to optimize outputs with precise inputs, revolutionizing the agriculture
industry. Through real-time data collection and analysis, these technologies enable farmers
to make informed decisions and enhance productivity while minimizing environmental
impacts. Traditional farming methods are increasingly challenged by environmental and
economic pressures, necessitating a shift towards more sustainable practices. Precision
agriculture offers a solution by leveraging advanced technologies to create a more con-
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trolled and resource-efficient farming environment. By conservatively utilizing resources
such as water, fertilizers, and pesticides, precision agriculture reduces costs and envi-
ronmental footprints, contributing to long-term sustainability. Smart farm management
benefits significantly from advanced predictive models and automated systems. Techniques
such as regression models and convolutional neural networks (CNNs) enable accurate
forecasts of weather patterns, soil properties, and crop health. This predictive capability
allows farmers to optimize farming operations, from soil management to crop monitoring,
in real time. Additionally, IoT-enabled sensors and actuators provide continuous data
collection, further supporting data-driven decision-making in agriculture. Furthermore,
advancements in remote sensing through satellite data from programs such as Landsat
and Sentinel significantly enhance environmental monitoring capabilities. These satel-
lites provide high-resolution, real-time data crucial for precise crop management, land
cover classification, and vegetation analysis, further strengthening the precision agriculture
ecosystem. Looking ahead, agriculture’s future is ripe with opportunities for innovation.
NLP-driven chatbots could offer personalized advice, improving farmers’ access to expert
knowledge. Moreover, advancements in predictive algorithms and hybrid technologies
promise further improvements in resource management and sustainability. As the global
population approaches 9.7 billion by 2050, the agricultural sector faces growing challenges.
The combination of these cutting-edge technologies offers encouraging answers and opens
the door to more sustainable and productive farming methods. To achieve fair access
and adoption, governments, technology companies, and the farming community must
work together to realize these benefits. The alignment of these technical developments
with the 2030 Agenda’s Sustainable Development Goals (SDGs) is another important point
to emphasize. SDG 2 (Zero Hunger) is directly supported by precision agriculture’s use
of cutting-edge technologies like artificial intelligence (AI), the Internet of Things (IoT),
and machine learning (ML), which increase productivity and improve food security. By
optimizing resource use, lowering environmental footprints, and improving land man-
agement, these technologies also support sustainable practices that align with SDGs 12
(Responsible Consumption and Production), 13 (Climate Action), and 15 (Life on Land).
These developments have the potential to make agriculture a more resilient and egalitarian
sector by connecting technological improvements with global sustainability goals.

4. Future Perspectives

The future of agriculture lies at the intersection of technology and sustainability, with
Al models playing pivotal roles in shaping the industry. As we look ahead, several key
trends and opportunities emerge for the continued advancement of sustainable agriculture:

O  Advanced Algorithms: The further exploration of ML, DL, and hybrid algorithms
holds promise for improving resource management and sustainability in agriculture.
By developing more sophisticated models, we can enhance predictive capabilities and
optimize farming operations for maximum efficiency.

O  Data Integration and Analysis: The integration of diverse data sources, including
satellite imagery, sensor data, and weather forecasts, presents opportunities for com-
prehensive analysis and informed decision-making in agriculture. Advanced data
mining and management tools will be essential for extracting valuable insights from
large datasets.

O  Smart Farming Technologies: Efficiency and advances in agriculture will be fueled
by ongoing innovation in smart farming technology, such as robotics, drones, and
sensors enabled by the Internet of Things. More sustainable farming methods are
made possible by these technologies, which allow for the real-time monitoring and
management of crops, livestock, and environmental conditions. In what ways might
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3D mapping and monitoring support each farm’s sustainability objectives? How
might unmanned hybrid (aerial-ground) drones enhance agricultural monitoring
operation management [152]?

O Al Applications in Irrigation Science and Water Use Efficiency: Artificial intelligence
is transforming irrigation science and water usage efficiency, solving water shortage
concerns exacerbated by climate change. Precision agriculture, which incorporates
Al-powered technologies such as smart sensors, IoT, and wireless sensor networks,
optimizes irrigation by considering soil moisture fluctuation and crop water require-
ments [153]. Smart irrigation delivers accurate water delivery, reducing waste and
crop stress while enhancing resource management [154]. Conventional irrigation
techniques frequently lead to unequal water distribution, which causes inefficien-
cies such as nutrient leaching, runoff, and yield decreases, since they fail to take
into consideration dynamic soil and weather conditions. Wireless sensor networks,
IoT-enabled smart sensors, and Al-driven models have all been used in recent de-
velopments to improve irrigation scheduling and track environmental factors in real
time [155-157]. Al-powered irrigation control systems provide optimal water usage
by dynamically adjusting water applications based on crop responses, predictive
analytics, and external environmental disturbances. Although there has been a lot of
progress, future studies ought to focus on strengthening Al integration with current
smart irrigation technologies, enhancing data-driven decision support systems, and
tackling issues with system scalability, energy efficiency, and data accuracy. In the
face of climate uncertainty, expanding Al applications in irrigation research will be
essential to attaining the sustainable management of water resources and ensuring
global food security.

O  Digital Agriculture Platforms: The emergence of digital agriculture ecosystems and
platforms will make it easier for participants in the agricultural value chain to work
together and exchange knowledge. These platforms can provide farmers with access
to market information, financial services, and agronomic advice, empowering them
to make informed decisions and improve productivity.

O  Policy Support and Investment: Governments and policymakers play a crucial role
in supporting the adoption of cutting-edge technologies in agriculture. Policies that
promote investment in technology infrastructure, training programs for farmers, and
research and development initiatives will be essential for driving innovation and
ensuring equitable access to agricultural technologies.

O Addressing Barriers to Adoption: Overcoming challenges such as high costs, training
requirements, and data security concerns will be critical for the broader adoption of
Al ML, DL, and IoT in agriculture. Collaborative efforts between governments, tech-
nology providers, and the farming community are needed to address these barriers
and realize the full potential of technology-driven agriculture.

The future of sustainable agriculture is bright because of advancements in cutting-
edge technologies like AI, ML, DL, and IoT. We can create a more resilient, efficient, and
environmentally sustainable agriculture system to feed the growing global population
while protecting natural resources for coming generations by utilizing the potential of these
technologies and embracing innovation.
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The following abbreviations are used in this manuscript:

Abbreviation Full Form

Al Artificial Intelligence

IoT Internet of Things

PA Precision Agriculture

GPS Global Positioning System

GIS Geographic Information Systems
NDVI Normalized Difference Vegetation Index
SAVI Soil-Adjusted Vegetation Index
VSSI Vegetation Soil Salinity Index
EVI Enhanced Vegetation Index
NLVI Non-Linear Vegetation Index
DVI Differential Vegetation Index
GRVI Green Ratio Vegetation Index

SI Salinity Index

ERSI Enhanced Residues Soil Salinity Index
CRSI Canopy Response Salinity Index
@] Clay Index

GI Gypsum Index

BI Brightness Index

NMDI Normalized Multi-Band Drought Index
L) Radiance

p(A) Reflectance

USGS United States Geological Survey
NASA National Aeronautics and Space Administration
ESA European Space Agency

SWIR Shortwave Infrared

NIR Near-Infrared

R Red

B Blue

G Green

U Pi (Mathematical Constant)

0 Solar Zenith Angle

NRBS Nitrogen-Rich Biosensor Spots
DL Deep Learning

ML Machine Learning

VRT Variable-Rate Technology

SVM Support Vector Machine

KNN K-Nearest Neighbors

DT Decision Tree

RF Random Forest

ANN Artificial Neural Network

MSE Mean Squared Error

LSTM Long Short-Term Memory

TP True Positives
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SOC
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RNN
MODIS
SNAP
RMSE
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RGB

SIF
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MLP
YOLO
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Inception-ResNet
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AI-ML
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True Negatives

False Positives

False Negatives

Number of trees in Random Forest

Posterior probability of data point y given X

A satellite mission for Earth observation by the European Space Agency
A satellite for remote sensing managed by NASA and USGS

A spectral sensor commonly used in agricultural remote sensing
Predictive Crop Modeling

High-Resolution Imagery

Ensemble Learning

Remote Sensing

Extreme Learning Machine

Soil Organic Carbon

Portable X-ray Fluorescence

Deep Neural Network

Unmanned Aerial Vehicle

Recurrent Neural Network

Moderate-Resolution Imaging Spectroradiometer

Sentinel Application Platform

Root Mean Square Error

Coefficient of Determination

Least Absolute Shrinkage and Selection Operator

Genetic Algorithm

Red, Green, Blue (color model used for images)

Solar-Induced Chlorophyll Fluorescence
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Multi-Layer Perceptron

You Only Look Once (a family of real-time object detection models)
Radial Basis Function (a kernel function used in SVM)

Principal Component Analysis

Viewpoint Feature Histogram (used in object recognition and classification)
Mean Average Precision (used to evaluate object detection models)
A measure of a model’s accuracy, combining precision and recall

A hybrid deep learning architecture combining Inception and ResNet models
Simple Linear Iterative Clustering (an algorithm for image segmentation)
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Soil Plant Analysis Development
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Natural Language Processing

Artificial Intelligence and Machine Learning
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