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Abstract

The implications of global warming present significant threats to both crop productivity
and environmental sustainability. The global population greatly depends on rice as a
staple food, contributing significantly to global warming and agricultural greenhouse gas
(GHG) emissions. Agricultural soils play a crucial role in the release and uptake of es-
sential GHGs, including methane (CH,), nitrous oxide (N,O), and carbon dioxide (CO,),
serving as both sources and sinks within the agricultural ecosystem. Notably, rice fields
alone account for approximately 30% and 11% of global CH4 and N,O emissions from
agricultural activities, respectively. As the demand for rice is expected to rise in the
future, it becomes increasingly critical to address GHG emissions and minimise the
detrimental environmental effects associated with rice production. This review provides
a comprehensive synthesis of the available data regarding the influence of different crop
management practices on GHG emissions in rice fields. We recognise the substantial
potential for reducing GHG emissions through modifications in traditional crop man-
agement systems. Our analysis evaluates various options, such as adjustments in
cropping practices, regulation of organic and fertiliser inputs, management of tillage
techniques and irrigation strategies, and the selection of suitable cultivars, all of which
can contribute to GHG emission reduction. It is crucial to consider that changes in
management practices may have simultaneous and sometimes contradictory effects on
different gases through various mechanisms. Therefore, our comprehensive evaluation
aims to assess the potential global warming impact of each approach, considering the
magnitude of their effects on all gases. This assessment seeks to identify suitable crop
management practices that effectively reduce GHG emissions in rice cultivation while

considering the overall environmental impact.
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1 | INTRODUCTION

Global warming is a significant challenge in today's world, primarily
caused by the increased concentration of greenhouse gases (GHGs)
in the atmosphere. This leads to the well-known “greenhouse
effect” phenomenon (Burney et al., 2010). The average global
temperature is rising significantly due to the intensified greenhouse
effect. Projections indicate that by the end of the twenty-first
century, temperatures could increase by approximately 1.1°C to
6.4°C (IPCC, 2007). Various factors, such as water vapour, ozone,
methane (CHy,), carbon dioxide (CO,), nitrous oxide (N,O), and
chlorofluorocarbons, contribute to the increase in the earth's tem-
perature (Hussain et al., 2015). The looming threat of global
warming can significantly exacerbate the ongoing challenge of
worldwide food insecurity. The repercussions of climate change are
evident through escalating temperatures, fluctuating rainfall pat-
terns, and a surge in climate-linked extremes like floods, droughts,
cyclones, rising sea levels, salinity shifts, and soil erosion. Among all
sectors, agriculture emerges as particularly vulnerable to these
shifts, driven by the profound influence of regional and national
climates on the characteristics of vegetation and crops. Climate
change is also generating considerable challenges for global agri-
cultural productivity, leading to increased food prices (Fahad
et al, 2022). The literature shows an increasing trend in GHG
emissions (IPCC, 2007; Smith et al., 2007), with predictions by
Vergé et al. (2007) suggesting a potential 35%-60% increase in
emissions by 2030 (Figure 1). Globally, CO,, CH,4, and N,O con-
tribute 60%, 15%, and 5% to the anthropogenic GHG effect,
respectively (Hussain et al., 2015). CH4 and N,O, which originate
mainly from the agricultural sector, are the major contributors to
GHG emissions. These gases have 298 and 25 times greater global
warming potential (GWP) than CO,, respectively (IPCC, 2007).

Rice (Oryza sativa L.) is an important crop that covers a vast area
of approximately 1.38 million km? and accounts for 90% of the
world's rice production in Asia, with a total agricultural area dedicated
to cereal production of 20% (Belenguer-Manzanedo et al., 2022;
Zhong et al., 2016). According to Van Nguyen and Ferrero (2006), it is
projected that the global demand for rice will rise by approximately
24% over the next two decades. Moreover, rice fields are major
sources of CH4 and N,O and can also be a source or sink of CO,. The
estimated annual CH,4 emission rates from rice fields are 6.15 million
tons, which is equivalent to 17.9% of global methane emissions (Van
Nguyen and Ferrero, 2006). Furthermore, rice fields cultivated
through flooding are among the primary anthropogenic sources of
methane emissions (Mohanty et al., 2017). Agricultural management
techniques such as alterations in water management during rice
cultivation, such as single drainage (SD) or multiple drainages (MD),
can significantly reduce CH,, N>O, and CO, emissions by inducing
frequent changes between aerobic and anaerobic states in rice fields
(Yagi et al., 2020; Zhang et al., 2021). Additionally, recent studies
have demonstrated that the broadcast application of nitrogen-based
fertilisers increases N,O emissions (Li et al., 2006; Liang et al., 2017).
On the other hand, nitrogen-based fertilisers, particularly urea deep
placement significantly reduce N,O emissions in continuous flooding
irrigation (Gaihre et al., 2015; Gaihre et al., 2018), while it increases
N,O emissions under alternate wetting and drying (AWD) irrigation
(Islam et al., 2018). Moreover, coated fertilisers such as sulphur-
coated urea and neem-coated urea have emerged as another prom-
ising solution for reducing GHG emissions. These coated fertilisers
provide controlled-release mechanisms (Lawrencia et al., 2021). Khan
et al. (2017) stated that the implementation of slow-release fertilisers
holds the potential to diminish environmental pollution, encompass-
ing the mitigation of GHG emissions, because of their enhanced and

efficient nutrient utilisation. In the United States alone, urea and
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FIGURE 1 Global GHGs emissions trend categorised by regions: Southern America, North and Central America, South-West Pacific, Europe,
Asia, and Africa. Retrieved from Hussain et al. (2015). GHGs, greenhouse gases.
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ammonium sulphate fertilisers are predominantly used on approxi-
mately 3 million acres of rice farms annually, with urea being the most
widely utilised nitrogen source (Snyder et al., 2009). To meet the
demands of a projected global population of 9 billion by 2050, agri-
cultural output is expected to rise by 70%-100%, leading to a greater
reliance on the industrial Haber-Bosch process for nitrogenous fer-
tiliser production. This increased reliance could potentially elevate
GHG emissions (Win et al., 2021). Consequently, the resultant
increased levels of GHGs may lead to higher temperatures that can
disrupt essential plant functions such as enzyme activity, cell division,
photosynthetic reactions, membrane integrity, growth, and produc-
tivity (Jiang et al., 2010).

The Intergovernmental Panel on Climate Change (IPCC) has
projected a 2-4°C increase in global average temperature by the end
of the 21st century due to GHG emissions and various factors, both
human-induced and natural. This global warming trend has led to
higher temperatures and altered crop yield potential, including for
rice crops (Al-Zahrani et al., 2022). The anticipated temperature rise
of 2°C by 2050 is foreseen to play a significant role in the escalation
of heat stress in agriculture. Rice plants are particularly susceptible to
heat stress, especially during their reproductive phase. As global
warming continues, heat and drought stresses are expected to occur
more frequently and unpredictably, which can cause a huge impact
on growth and productivity of rice crops (Wu et al., 2019). Rice
vegetative growth endures daytime temperatures up to 40°C,
whereas floret development becomes markedly sensitive to tem-
peratures surpassing 35°C, with nighttime temperature stress ex-
erting a more detrimental impact than daytime stress. Studies have
shown that current rates of global temperature change could lead to
a significant reduction of 41% in rice yield by the end of the 21st
century. Wu et al. (2017) have observed that high temperatures have
adverse effects on various grain characteristics of rice, including
reduced grain length, width, area, number of spikelets per panicle,
head rice percentage, and milled rice percentage. Furthermore, Wu
et al. (2022) also found that heat stress during the panicle initiation
stage affected milling and appearance qualities in rice, with variations
observed among different rice genotypes. Considering that the total
global arable land available for rice production is assumed to remain
unchanged, it becomes necessary to achieve intensified rice yields to
ensure food security. This intensification must be accomplished in
sustainable, profitable, and socially acceptable ways without
increasing GHG emissions (Deng et al., 2022). Therefore, the devel-
opment of innovative solutions is crucial to ensure food security
while protecting the environment and natural resources by reducing
GHG emissions (Win et al., 2021).

This paper provides a comprehensive analysis of GHG mitigation
strategies specifically for rice cultivation, distinguishing it from pre-
vious reviews that focused on singular aspects or regional practices.
By integrating recent advancements in crop management and eval-
uating their GWP, this offers a holistic view of effective strategies to
reduce GHG emissions. An extensive array of practices is covered—
from organic amendments and biochar application to cultivar selec-

tion and cropping regime modifications. The discussion not only
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highlights the effectiveness and trade-offs of these techniques but

also emphasises the need for innovative approaches tailored to
diverse agricultural systems and environmental conditions. By syn-
thesising these multifaceted strategies and their impacts on GHG
emissions, along with identifying critical areas for future research, this
paper serves as a valuable resource for advancing sustainable rice
production practices. Through this integrative approach, it aims to
bridge knowledge gaps and offer actionable insights that can guide
future research and policy development in the pursuit of more en-

vironmentally sustainable rice cultivation.

1.1 | Mechanism of GHGs emissions

Agricultural soils play a crucial role in the release of GHGs, including
CH,4, N,O, and CO,, through complex interactions involving soil,
plants, and microorganisms. Soil microbes, which are responsible for
the breakdown and transformation of organic matter into stable soil
organic matter (SOM), are the primary source of enzymes involved in
these processes, thereby directly influencing GHG emissions, carbon
storage, and carbon loss from the soil (Mohanty et al., 2017). In
anaerobic conditions, such as those found in flooded rice fields, me-
thanogens are responsible for the production of CH, (Figure 2) (Zhong
et al., 2016). Methanogenesis occurs primarily through three path-
ways: hydrogenotrophic methanogenesis, where H, produced during
organic substrate fermentation is utilised to reduce CO, to CHy;
acetoclastic methanogenesis, in which methanogens convert acetate—
often generated from organic matter breakdown—into methane; and
methylotrophic methanogenesis, where certain methanogens utilise
methanol and other methylated compounds (Kriger et al., 2001;
Narrowe et al., 2019; Stams et al., 2019). Temperature plays a signif-
icant role in microbial activity related to CH4 synthesis, initially
increasing with temperature until an optimum is reached, after which it
declines due to enzyme deactivation (Van Groenigen et al., 2013). N,O
is primarily generated through nitrification and denitrification pro-
cesses (Kasimir-Klemedtsson et al., 1997), which can coexist in flooded
rice soils (Bhattacharyya et al., 2013) (Figure 2). Nitrification, an aer-
obic process, involves the oxidation of ammonium (NH4") to nitrite
(NO,") and then to nitrate (NO3"), facilitated by ammonia-oxidising
bacteria (AOB) and archaea (AOA) (Huang et al., 2019). Denitrification,
an anaerobic process, reduces nitrate to N,O and, ultimately, N, gas,
with bacteria such as Pseudomonas and Paracoccus playing key roles
(Van Spanning et al., 2005). The coexistence of these processes un-
derscores the adaptability of microbial communities in response to
fluctuating redox conditions, influencing N,O emissions. Additionally,
microbial activity in the decomposition of organic compounds leads to
CO, emissions, with anaerobic conditions in flooded soils hindering
complete carbon oxidation and promoting carbon deposition (Figure 2)
(Gupta et al., 2021; Rahman & Yamamoto, 2020). However, the mi-
neralisation of organic matter significantly contributes to CO, emis-
sions, as soil microorganisms break down organic carbon pools, while
agricultural residues and root exudates provide the carbon substrates
necessary for this transformation.
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1.2 | Agriculture shares in GHG emissions

Agriculture is a significant contributor to global GHG emissions, ac-
counting for approximately 20% of worldwide GHG emissions
(Bhattacharyya et al., 2013). The production of rice results in substantial
emissions of GHGs, including CH4, N,O, and CO, (Figure 3). China,
with its extensive rice fields covering over 160 million hectares, stands

as the largest rice producer globally, accounting for 28% of the world's

rice production in 2013. Approximately 75% of the world's annual rice
production takes place on the 79 million hectares of irrigated land
dedicated to rice farming (Xu et al.,, 2016). According to Xia et al.
(2016), China's rice cultivation contributes to approximately 22% of the
country's total GHG emissions from cropland, with annual emissions
estimated at around 7.4 Tg CH,4 and 32 Gg N,O. Overall, agriculture is
responsible for approximately 50% and 60% of global CH; and N,O

emissions, respectively, accounting for approximately 10%-12% of
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total anthropogenic GHG emissions (Xu et al., 2016). Studies have
indicated that rice fields contribute to 30% of annual nitrous oxide
emissions, 57% of carbon dioxide emissions, and 13% of methane
emissions. These percentages correspond to approximately 16.0% of
global nitrous oxide emissions, 78.2% of global carbon dioxide emis-
sions, and 5.8% of global methane emissions (Kudo et al., 2014).

Extensive tillage and regular agricultural irrigation practices have a
significant impact on CO, emissions. In India, the cultivation of puddled
rice alone contributes to approximately 24% of the country's total
agricultural methane emissions, amounting to 3.37 million tons. The
application of nitrogenous fertilisers also leads to the production of
around 0.14 million tons of N,O emissions in rice (Gupta et al., 2016).
Soil cultivation and annual crop growth processes accelerate the
transformation of soil carbon into CO, through the activities of soil
microorganismes. Initially, the depletion of soil carbon increases, but after
several decades of cultivation, it tends to stabilise at a lower level (Vergé
et al., 2007). While CO, emissions are a concern, the primary focus in
agriculture is on N,O emissions, primarily caused by the application of
nitrogen in soil and cropping systems. Agricultural practices play a
crucial role in managing soil and fertiliser use, which directly influences
N,O emissions. Although N,O emissions are a modest component
compared to CO, emissions in the overall GHG issue, they are a key
consideration due to their association with agricultural practices (Snyder
et al., 2009). The increasing demand for rice cultivation has led to a
significant expansion of fertiliser use and rice-growing areas worldwide
over the past 70 years. This expansion has contributed to the rise in
atmospheric emissions of CH4 and N,O (Gupta et al., 2021).

Over the past 20 years since the Green Revolution, rice production
per acre in numerous Asian countries has doubled. With the projected
global population reaching nine billion by 2050, the Food and Agriculture
Organisation estimates a 60% increase in agricultural output, including
rice production, to meet the growing demand (Maraseni et al., 2018).
However, the increased use of synthetic nitrogen (N) fertilisers, as high-
lighted by Zhao et al. (2015), may contribute to a 60% increase in agri-
cultural emissions of CH, and N,O over the next two decades. To miti-
gate GHG emissions, various strategies can be employed, such as carbon
sequestration, reducing soil erosion, and implementing measures to
decrease N,O and CH,4 emissions. It is important to note that manage-
ment techniques aimed at reducing emissions may have complex and

sometimes contradictory effects on different GHGs (Nayak et al., 2015).

2 | METHODS AND METHODOLOGY

In this study, we systematically searched five prominent online da-
tabases, namely Scopus, Google Scholar, ScienceDirect, Web of
Knowledge, and SpringerLink, to identify relevant research papers
investigating the practical techniques for reducing GHG emissions
from rice fields from 2012 to 2022. The meta keywords used were
GWP, GHGs, nitrous oxide, carbon dioxide, methane, and rice. After
the initial search, we obtained 800 records from the five databases.
We eliminated duplicates during the screening process, which
resulted in 628 unique records. These records were screened based
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on the title and abstract study, and we excluded 546 records that did

not meet the study's inclusion criteria. The inclusion criteria required
the investigations to report at least two GHG emissions: N,O, CHy,
and CO,. The papers had to be written in English and test at least one
GHG reduction strategy. After screening based on the title and
abstract study, we proceeded with a full-text review of the remaining
82 records. Among them, we excluded 54 studies that did not meet
the inclusion criteria, such as those that reported on only one GHG
emission or did not test any GHG reduction strategy. Lastly, we
obtained 28 studies that met the PRISMA flow diagram's full-text
study criteria (Figure 4). These studies were used to analyse and
evaluate the various alternatives for reducing GHG emissions from
rice fields.

3 | STRATEGIES FOR MITIGATING GHGS
FROM RICE FIELDS

Numerous studies on rice paddies have been carried out worldwide
due to growing worries about rice fields' vulnerability to GHG
emissions and their critical contribution to global warming. Table 1
lists the mitigating strategies investigated and reported in the studies
we encountered. Furthermore, Table 2 presents the related research,
including soil types, field management techniques, fertiliser sources,
average GHG emissions, GWP trends, and locations. Based on our
interpretation of the findings, we recommend several technical
agronomic management strategies for rice paddies, including con-
trolled irrigation, application of nitrogen inhibitors, reduced usage of
nitrogen fertiliser, application of mixed synthetic and organic fertili-
sers, conservation tillage, rice planting techniques, and rice cultivar
selection (Figure 5). By implementing these strategies, total GHG
emissions from upland crops can be lowered, ultimately preventing
global warming (Nayak et al., 2015; Xu et al., 2016; Yagi et al., 2020).
Future research needs to continue investigating and improving these
techniques to sustain long-term and eco-conscious rice production
practices.

3.1 | Water management

Water management is a critical factor in reducing GHG emissions
from rice fields (Figure 6) (Maraseni et al., 2009). Various strategies,
including midseason drainage (MD), sequential soil soaking and dry-
ing, occasional watering, and regulated irrigation, effectively minimise
GHG emissions compared to traditional flooded rice production
(Hussain et al., 2015). However, the practical implementation of
these strategies faces several challenges. Economic costs associated
with adopting new practices can be significant barriers, particularly
for smallholder farmers who may struggle to invest in new technol-
ogies or infrastructure (Monaco et al., 2016). However, in Vietnam,
research by Hoang et al. (2023) and Tran et al. (2018) showed that
AWD not only decreased methane emissions but also improved

water efficiency, leading to a reduction in water usage. These
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FIGURE 4 PRISMA flow chart illustrating the study selection process.

examples illustrate the potential benefits of adopting these strategies
but also emphasise the need for tailored approaches that consider
local conditions and farmer capabilities. The transition between dry
and wet seasons is vital, allowing soil to shift from aerobic to
anaerobic conditions, which enhances root activity and soil structure.
This shift significantly reduces methane production and decreases
the long-term need for water inputs (Gupta et al., 2021). Enhancing
oxygen diffusion into the soil is a key strategy for mitigating methane
emissions, as oxygen inhibits methanogenic microbes (Peyron
et al., 2016). Research by Islam et al. (2020), Linquist et al. (2018),
Wang et al. (2020), and Zhang et al. (2021) indicates that the AWD
irrigation technique can reduce methane emissions by an average of
38% compared to continuous flooding (CF). However, this method is
associated with a 34% increase in nitrous oxide emissions, high-
lighting the trade-offs involved. While AWD effectively curtails
methane, it raises concerns about increased N,O emissions, neces-
sitating careful management. Maneepitak et al. (2019) emphasised
that AWD can sustain low yield-scaled GWP in irrigated lowland
double-rice farming, even without rice straw application, indicating its
potential for sustainable agriculture. Additionally, Meijide et al. (2017)
confirmed that flooding and multiple drainages (MD) are effective

techniques for reducing methane fluxes in rice fields. Understanding
the biochemical and physiological mechanisms behind these emis-
sions is crucial. The reduction in methane can be attributed to dis-
rupted anaerobic conditions that hinder methanogen activity. Con-
versely, the rise in N,O emissions under AWD may result from
increased nitrification and denitrification in intermittently moist soils.
This underscores the need for tailored water management strategies
that minimise trade-offs between methane and nitrous oxide emis-
sions. Future research should focus on the microbial communities
involved in these processes and explore synergistic combinations of
AWD with innovative soil amendments or microbial inoculants to
enhance mitigation potential while reducing N,O emissions. Collab-
orative interdisciplinary research can uncover holistic solutions for
sustainable rice cultivation, reducing its environmental footprint

while ensuring food security.

3.2 | Tillage management

Tillage practices significantly influence GHG emissions in rice fields,
highlighting the complex interactions between soil dynamics and
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emission pathways. In some regions, reduced tillage has been asso-
ciated with increased organic matter storage, including organic car-

bon (OC) and organic nitrogen. While this can enhance soil health, it

Modifying
crop regime
PTR, SRI

may also lead to higher nitrous oxide emissions and affect net global

CR

warming potential (NGWP) (Snyder et al., 2009). Tillage accelerates
the oxidation of soil carbon to CO, by promoting aeration, facilitating

Cultivar
selection

interactions between agricultural residues and the soil, and enhancing
microbial activity (Hussain et al., 2015). Integrating no-till systems in
flood-irrigated rice fields represents a promising approach to mitigate
GHG emissions. Studies by Bayer et al. (2014) and Zhang et al. (2015)
found that no-till practices reduced methane emissions by 21%

Biochar
application

compared to traditional tillage. Additionally, Del Grosso et al. (2009)
demonstrated that using no-till systems with nitrification inhibitors

significantly decreases net GHG emissions, suggesting that these

Manure
application

practices are particularly beneficial in regions with SOM deficiency,
such as Asia's rice-wheat belt. Research studies in China have shown
that the use of drainage alongside no-till practices led to the reduc-
tion in N,O and CH,4 emissions, highlighting the effectiveness of this
combination (Hao et al., 2016). Chirinda et al. (2018) proposed that

soil compaction in no-till systems could extend methane residence

Straw/
residues
management

time, enhancing its oxidation by methanotrophic bacteria and further

slow-release

Nitrification
inhibitors/
fertilisers

reducing methane emissions from rice plants. This underscores the
intricate relationship between soil conditions and methane dynamics
in rice production. Shah et al. (2017) confirmed that the combination
of fertiliser type (urea) and tillage practices (no-till and conservation

tillage) influenced N,O emissions. Specifically, when anhydrous NH3

Fertiliser &
amendments

other

was used as a fertiliser, NoO emissions were higher in conventional
tillage systems. These findings highlight the need for tailored man-
agement strategies that consider the interactions between fertiliser

sources and tillage practices to effectively mitigate N,O emissions.

Tillage
management

3.3 | Fertiliser management

Potential GHGs mitigation strategies tested

management

Water

A significant portion of GHG emissions in agriculture is attributed to
the manufacturing and transportation of fertilisers (Snyder

et al., 2009). Promising results have emerged from effective ferti-

SC/MA

liser management techniques aimed at reducing GHG emissions
from rice fields. These include using slow-releasing fertilisers,
properly incorporating fertilisers into the soil, adjusting application
rates and timing to meet crop requirements, and avoiding excessive

N,O CO;
v
v
v
v
v
v
v

applications (Gupta et al., 2021). A study in Vietnam demonstrates

Data
CH,4

that using slow-release fertilisers reduced N,O and CH4 emissions

while maintaining rice yields, highlighting the potential benefits of
this approach (Trinh et al., 2017). Optimising fertiliser application

rates is crucial for achieving high rice yields while minimising GHG

Location
Bangladesh v

Brazil
China
China
India
Italy
USA

emissions and nitrogen consumption. Peak emissions of CO,, N,O,
and CH, are typically observed during critical growth stages, such as

(Continued)

the vegetative and reproductive phases of rice cultivation (Zhong
et al., 2016). Moreover, improving fertiliser use efficiency can help
reduce GHG emissions, particularly N,O, and indirectly decrease

CO, emissions associated with nitrogenous fertilisers (Hussain

Note: *: Describe the research that is referenced in that specific database; ¥ /X: Indicate Yes/No if CH,4, CO,, & N,O are reported in the study; @: Indicate the inclusion of soil characteristics (SC); ¢: Indicate the

inclusion of microbial activity (MA); @¢: Indicate the inclusion of both soil characteristics and microbial activity (SC + MA).
Abbreviations: CR, crop rotation; DRCS, double rice cropping system; DSR, direct seeded rice; GHG, greenhouse gas; PTR, puddled transplanted rice; SRI, system of rice intensification.

TABLE 1
References
Bayer et al. (2014)
Islam et al. (2020)
Xu et al. (2015)
Li et al. (2018)
Jain et al. (2014)
Lagomarsino
et al. (2016)
Linquist et al. (2015)

et al., 2015). However, challenges remain, such as the need for
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(Continued)

TABLE 2

Location

Trends of GWP

Mean GHGs emissions

Source of nutrients

Soil type Field management

Author

Jingzhou,
China

The integrated impacts of water and

4 -1.8-559mgm 2 h7%

N,O: 752.2-777.9 ugm 2 h?

CH

Urea; PCU; Nitrapyrin-

Cl, Surface water drainage (SWD)

Hydragric

Li et al. (2018)

nitrogen management on CH4 and N,O

emissions must be assessed for

total GHG.

urea composition with

hydroquinone
(NU +HQ)

(2015)

Global Initiative of
Sustainable Agriculture
and Environment

New

GWP was reduced by 27.5% for SRI and

30.2% for MSRI compared to PTR

planting.

CH,: 0.02-5.07 kgha™td™%;
N,O: 4.41-19.86 gha™'d™?

NPK

PTR, conventional SRI, and modified

SRI (MSRI)

Alluvial soil

Jain

Delhi,
India

et al. (2014)

(2009)

Bologna,
Italy

AWD maximised the GWP of rice crops,
but caution must be exercised while

CH,: 15.71 kgha™td™%;
N,O: 1.76 kgha™*

Permanent flooding (PF) and AWD. NPK

Mesic

Lagomarsino
et al. (2016)

Thapto-
Histic

(2013)

implementing this water-saving strategy.

YADAV ET AL.

Fluvaquent

Stuttgart,

USA

The flooded control treatment had the

CHg4: 2kgha™id™%;

NPK

Crop rotation: rice-rice (RR) and rice-

Dewitt
soybean (RS)

Linquist
et al. (2015)

greatest GWP of 347 kg CO, eq Mg™*
(average across years and locations).

N,O: 100 gha *d™*

silt loam

(2013)

Water management: CF, AWD/40F (flood),

AWD/60, and AWD/40

Abbreviations: AWD, alternate wetting and drying; GWP, global warming potential.

farmers to receive training on best practices and access to suitable
fertiliser options. Surveys in Malaysia indicate that many farmers are
unaware of slow-release fertilisers and their benefits, which em-
phasises the need for educational programs to enhance adoption
(Adnan et al., 2020).

3.3.1 | Selecting fertiliser & other amendments

The choice of fertiliser significantly impacts GHG emissions in rice
fields, playing a crucial role in balancing emissions of N,O, CO», and
CH,. Approximately 75% of N,O emissions from agricultural soils
result from nitrogenous fertiliser applications, making careful
selection essential for effective mitigation (Mohanty et al., 2017).
The biochemical effects of nitrogenous fertilisers on GHG emis-
sions are complex, particularly with ammonium-based fertilisers,
which can stimulate methanotrophic activity and enhance methane
oxidation. High concentrations of soil ammonium-N are key to
reducing overall methane emissions (Hussain et al., 2015). Yagi
et al. (2020) demonstrated that fertilisers containing sulphates,
such as ammonium sulphate or phosphogypsum, can effectively
reduce CH,4 emissions in rice fields. Their trials showed a consistent
reduction in CH,4 emissions due to sulphate-induced modulation of
methanogenesis, with effect sizes ranging from 0.31 to 0.76. This
suggests that using these fertilisers contributes to methane miti-
gation. Conversely, Zhao et al. (2015) found that using urea alone
led to higher nitrogen loading rates and GHG emissions, indicating
that excessive nitrogen can exacerbate emissions. This aligns with
Yagi et al. (2020) findings, emphasising the importance of evalu-
ating fertiliser impacts holistically. Interestingly, Ku et al. (2017)
noted that applying urea under AWD conditions can reduce GHG
emissions without compromising yield in tropical regions. This
indicates that specific fertiliser application practices, such as using
urea in AWD, can effectively mitigate emissions while maintaining
productivity. Nasrullah et al. (2022) highlighted the emissions
associated with synthetic nitrogen manufacturing during top
dressing (TD) compared to deep placement (DP), finding that TD
methods resulted in higher GHG emissions, particularly CO,, when
scaled to yield and area. The contributions of Yagi et al. (2020),
Zhao et al. (2015), Ku et al. (2017), and Nasrullah et al. (2022)
collectively underscore the intricate relationship between nitroge-
nous fertilisation and GHG emissions. Mechanistically, sulphate-
induced reduction of methanogenesis, as described by Yagi et al.
(2020), interacts with nitrogen availability and microbial commu-
nities explored by Zhao et al. (2015). Ku et al. (2017) and Nasrullah
et al. (2022) further clarify how specific application practices
influence emissions dynamics. Future research should focus on the
biochemical and microbial mechanisms underlying sulphate-
induced CH,4 reduction. Understanding the interplay between
nitrogen availability, soil biota, and emissions will provide valuable
insights for refining fertiliser strategies. The synergy of specific
application techniques holds promise for developing nuanced ap-
proaches to GHG mitigation.
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FIGURE 5

Agronomic management strategies for mitigating GHGs emissions from rice fields. GHGs, greenhouse gases.
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FIGURE 6 Bar graph illustrating the mean global warming potential (GWP) calculated from articles selected through the PRISMA selection
process. GWP was calculated using the formula: GWP = CH,, emission x 23 + N,O emission x 296 + CO, emission.

3.3.2 | Adjusting fertiliser requirements according to
demand & supply

The interplay between crop productivity and GHG mitigation can be
optimised through precision fertilisation strategies that align nitrogen
and phosphorus levels with crop needs. Despite the use of advanced
techniques, approximately 48% of applied nitrogen is released into
the atmosphere as gaseous nitrogen (Hussain et al., 2015). In cases
where phosphorus deficiency limits efficient nitrogen utilisation and
reduces yields, increasing nitrogen fertiliser rates alongside phos-
phorus application can be effective without causing nitrate-N

accumulation. Proper phosphorus application not only boosts yields
and financial returns but also lowers soil nitrate-N levels, thereby
2009).
Additionally, splitting nitrogen applications and utilising tools such as

minimising environmental nitrogen losses (Snyder et al.,

colour charts or photometers to assess crop nitrogen needs based on
leaf colour can enhance nitrogen utilisation efficiency (Wassmann
et al., 2004). Liang et al. (2017) demonstrated that the timely appli-
cation of nitrogen at the appropriate rate improves nitrogen use
efficiency (NUE) and reduces nitrogen losses. When combined with
the AWD irrigation technique, this approach achieved significant
reductions in NGWP and nitrogen losses—specifically, reductions of
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13.6% and 26.3%, respectively, under varying wet and dry irrigation

regimes. Zhong et al. (2016) confirmed these findings, showing that
applying 225 kg N/ha of the appropriate nitrogen fertiliser resulted in
lower yield-scaled emissions of 3.69 and 2.23kg CO,-eq/kg rice
yield. These results indicate that proper timing and dosage of nitro-
gen application not only enhance NUE but also contribute to lower
GHG emissions per unit of rice yield. Liang et al. (2017) and Zhong
et al. (2016) further illustrate how the timing, dosage, and irrigation
practices intricately influence emissions dynamics. Future research
should explore the biochemical processes underlying phosphorus-
mediated nitrogen utilisation and the molecular mechanisms that
drive nutrient synergy. Understanding how nitrogen absorption
changes over time and the role of microbial communities can provide
new insights into emissions dynamics. Conducting rigorous field-scale
experiments could help translate these findings into practical

solutions.

3.3.3 |
fertilisers

Use of nitrification inhibitors/slow-releasing

The strategic use of nitrification inhibitors and slow-releasing fertili-
sers represents a significant advancement in reducing GHG emissions
from rice fields. Nitrification inhibitors, which vary in effectiveness
depending on soil type, moisture, organic matter, pH, and tempera-
ture, can disrupt the activity of nitrifying bacteria, methane oxidisers,
and methanogens (Wang et al., 2021). In contrast to soluble fertilisers
containing inhibitors, controlled-release fertilisers function by spe-
cifically inhibiting certain bacteria involved in nitrogen conversion.
Urease inhibitors temporarily halt the enzymatic degradation of urea,
directly affecting the urease enzyme (Snyder et al., 2009). Research
shows that the encapsulation of calcium carbide (ECC), which grad-
ually releases acetylene in the soil, can increase rice yields while
decreasing methane emissions (Hussain et al., 2015). Guo et al.
(2019) found that polymer-coated urea (PCU), including sulphur-
coated urea (SCU), reduced GWP by 21.1% and GHG intensity
(GHGI) by 31.7%. Nitrapyrin-coated urea showed even greater
reductions of 34.3% in GWP and 44.4% in GHGI, underscoring the
efficacy of these treatments in mitigating agricultural emissions. Li
et al. (2018) highlighted the effectiveness of combining nitrapyrin-
urea with hydroquinone (NU + HQ), which not only limits the for-
mation of inefficient tillers but also enhances nitrogen release pat-
terns beneficial for methane utilisation. Dawar et al. (2021) reported
that combining urea with biochar (BC) and biochar plus urea inhibi-
tors (BC+ Ul) led to reductions in soil NH; emissions by 27% and
69%, respectively, while also improving grain yield by 13% and shoot
biomass by 24%. In addition to synthetic inhibitors, plant-derived
substances such as neem oil, neem cake, and Karanja seed extract
have shown potential as natural nitrification inhibitors, reducing
nitrogen losses and GHG emissions (Gupta et al., 2021). Moreover,
Saud, Wang, et al. (2022) documented significant reductions in N,O
emissions (up to 90%) using biological nitrification inhibitors (BNlIs)
derived from rice cultivars Oryza sativa L. cv. Sabana 6 and cv. Toyo.

These findings align with previous research, highlighting the critical
role of inhibitors and slow-releasing fertilisers in mitigating GHG
emissions. Future exploration should focus on understanding the
biochemical interactions between these inhibitors and microbial
dynamics. Additionally, investigating the mechanisms underlying
nitrogen utilisation and the role of plant-derived substances can

reveal new insights.

3.4 | Supplementing organic amendments

Organic amendments play a crucial role in influencing GHG emissions
from rice fields. Generally, adding organic materials, such as manure
and straw, tends to increase CH,4 emissions. The extent of this
increase is influenced by factors such as the quantity, quality, and
timing of the organic material applied (Hussain et al., 2015). Organic
matter in rice fields comes from various sources, including by-
products of rice cultivation like sloughed-off root cells, exudates,
manure, and crop residues. The introduction of organic carbon (OC)
into the soil is a primary driver of methane production, whether from
organic fertilisers or the decomposition of agricultural residues (Win
et al., 2021). Raton et al. (2021) noted that plant-soil interactions are
affected by climate conditions alongside GHG emissions and OC
levels. One potential strategy to mitigate CH,4 emissions is to limit the
incorporation of straw and crop residues into the soil, as proposed by
Yagi et al. (2020). A study in Vietnam demonstrated that minimal
tillage combined with reduced straw incorporation led to a reduction
in CH4 and CO, emissions without significantly affecting rice yields
(Dung et al., 2022). However, challenges remain in convincing farm-
ers to change their practices, as many view the incorporation of straw

as beneficial for soil health.

3.4.1 | Straw/residues management

Managing straw and residues in rice fields as a GHG mitigation
strategy involves intricate biochemical and ecological dynamics. In
continuously flooded lowland rice systems, N,O emissions generally
remain unaffected by residue management practices (Bhattacharyya
and Barman, 2017). However, Belenguer-Manzanedo et al. (2022)
found that delaying straw incorporation and preventing winter
flooding can significantly reduce CH4 and CO, emissions during the
post-harvest season and subsequent cultivation periods. This effect is
attributed to changes in microbial communities and nutrient availa-
bility, which suppress methane-generating pathways and CO, efflux.
Methanogens thrive in anaerobic conditions created by waterlogged
soils, especially when straw is incorporated, leading to increased CH,
emissions (Kotsyurbenko et al., 2019). Conversely, nitrifiers can en-
hance N,O emissions when nitrogen-rich fertilisers are used with
residues, as aerobic conditions favour their activity (Hui et al., 2024).
Liu et al. (2016) suggested that combining NPK fertiliser with rice
straw strip mulching and green manuring can greatly enhance soil

organic carbon (OC) sequestration, achieving a 103% increase in



YADAV ET AL.

Global Initiative of
Sustainable Agriculture 15 of 22

sequestration rates and a 27% reduction in NGWP. This synergy
between straw carbon influx and nutrient-driven microbial activity
promotes accelerated OC sequestration and emissions reduction.
Bhattacharyya et al. (2012) further emphasised the role of inorganic
fertilisers in conjunction with rice straw for efficient OC sequestra-
tion and increased grain yields, with a notable sequestration of
1.39 Mgha™! of OC. These findings collectively highlight the impor-
tance of managing crop residues in guiding GHG mitigation. The
studies by Belenguer-Manzanedo et al. (2022), Liu et al. (2016), and
Bhattacharyya et al. (2012) serve as foundational insights into the
biochemical dynamics influencing emissions pathways. Future
research should focus on the temporal adjustments of microbial
communities during delayed straw incorporation, as well as the
mechanisms linking nutrients, carbon influx, and microbial interac-

tions to enhance OC storage.

3.4.2 | Manure applications

Numerous field experiments have explored the effects of organic
amendments on GHG emissions, particularly CH,4. Notably, there are
significant differences in GHG emissions between fresh and fer-
mented materials. In rice fields, the addition of organic materials, such
as manure and straw, can influence GHG emissions, with the timing
and quality of application being crucial for their effectiveness
(Hussain et al., 2015). Gupta et al. (2021) found that applying pre-
composted manures to rice soil can significantly reduce methane
emissions, suggesting that this approach may be an effective strategy
for mitigating CH, in rice cultivation. Conversely, Bhattacharyya et al.
(2013) reported that the use of FYM in combination with chemical
fertilisers (NPK) can lead to increased methane emissions, particularly
in year-round cropping systems. The application of both chemical
fertilisers and manure can stimulate carbon mineralisation, resulting
in elevated methane emissions under submerged conditions, partly
due to increased activity of methanogens in anaerobic zones. This
underscores the importance of considering the combined effects of
various fertilisers on methane emissions in rice fields. Snyder et al.
(2009) further dissected the relationship between manure applica-
tion, organic matter content, and N,O emissions. Their findings
revealed that the interaction of manure type, quality, and soil con-
ditions can significantly influence N,O emissions. In low organic
matter soils, supplementing with manure can increase N,O emissions
compared to mineral fertilisers, likely due to processes such as sub-
strate priming and the enhanced activity of nitrifiers under aerobic
conditions. Mohanty et al. (2017) identified a positive correlation
between water-soluble carbon and microbial biomass carbon in the
soil with methane emissions. This biochemical surge potentially en-
hances microbial activity, creating pathways for increased methane
production. These insights align with previous studies, highlighting
the critical role of microbial metabolism in shaping emissions
dynamics. The collective findings from Gupta et al. (2021),
Bhattacharyya et al. (2013), Snyder et al. (2009), and Mohanty et al.
(2017) provide a foundational understanding of the complex

and Environment

biochemical processes influencing emissions pathways. A deeper

exploration of pre-composting, microbial interactions, and methane
reduction is warranted. Investigating the interactions between
organic and inorganic components across various soil conditions

could yield valuable insights.

3.4.3 | Biochar application

The application of biochar is increasingly recognised for its potential
to enhance soil OC and significantly reduce GHG emissions, partic-
ularly CH4 and N,O (Hussain et al., 2015; Yagi et al., 2020). Recent
interest in biochar as a soil amendment has surged due to its dual
benefits: mitigating GHG emissions while improving crop vyields.
However, previous studies have reported mixed results regarding the
impact of biochar on GHG emissions (Qin et al., 2016). Gupta et al.
(2021) and Yagi et al. (2020) found that the addition of biochar
derived from rice straw at rates of 20 and 40 t/ha progressively
reduced CH4 emissions by 29.7% and 15.6%, respectively. These
studies also noted increased rice production, suggesting that biochar
application can enhance both environmental sustainability and agri-
cultural productivity. Similarly, Dawar et al. (2021) reported that
applying 5Mgha™* or 10 Mgha™ of biochar in urea-amended soils
significantly reduced total N,O emissions by 27% and 35%, respec-
tively, compared to urea alone. The enhanced retention of NH," is
believed to be a key mechanism for these reductions, as it constrains
nitrification processes and limits N,O emissions from nitrifiers. Qin
et al. (2016) also observed significant decreases in CH4 emissions
with biochar application at rates of 5, 10, and 20 t/ha, resulting in
reductions of 20.88%, 17.79%, and 39.85%, respectively, compared
to controls. These reductions are attributed to several factors,
including increased soil pH, enhanced adsorption of methane to soil
surfaces, and a rise in methanotrophic bacterial populations. Fur-
thermore, Bo et al. (2023) highlighted that biochar produced at high
pyrolysis temperatures can effectively adsorb dissolved organic car-
bon, a critical substrate for methanogenic microorganisms. This
adsorption reduces the substrate available for CH, production, fur-
ther supporting biochar's role in GHG mitigation. Additionally, while
biochar can improve conditions that inhibit methanogenesis, it may
also enhance nitrifier activity under aerobic conditions, potentially
increasing N,O emissions if not managed properly. Bamagoos et al.
(2021) found that combining biochar with phosphorus fertilisation
resulted in a 7% increase in rice grain yield compared to the control,
even under high-temperature stress. In summary, the application of
biochar presents a promising strategy for reducing GHG emissions in

rice cultivation while simultaneously improving crop vyields.

3.5 | Selection of suitable rice cultivar
In the context of increasing GHG concentrations and various abiotic
stresses, selecting appropriate rice cultivars becomes a critical

strategy for sustainable agriculture. Prominent abiotic stresses—such
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as drought, heat, cold, and salinity—trigger a range of morphological,

physiological, biochemical, and molecular responses that significantly
affect plant growth, development, and productivity (Fahad
et al., 2022). Variations in CH4 emissions among rice cultivars are
influenced by factors such as rhizospheric oxidation potential, root
exudates, and the plant's ability to transport CH,4 through aeren-
chyma tissue (Gupta et al., 2021; Hussain et al., 2015; Linquist
et al., 2018; Win et al., 2021). Notably, research by Chirinda et al.
(2018) and Zheng et al. (2014) indicates that yield-scaled GWP is
significantly higher in Indica rice varieties compared to Japonica
varieties. This highlights the importance of considering rice races in
evaluating GHG emissions in rice production systems. Recently, there
has been increased interest in “aerobic rice”, which includes drought-
resistant, high-yielding varieties. For example, Hanyou 73 (HY73), an
Indica hybrid, is recognised for its tolerance to drought and flooding
(Zhang et al., 2021). Furthermore, Saud, Shi, et al. (2022) demon-
strated that overexpressing DREB1A and OsPIL1 in transgenic rice
can enhance drought resistance without the growth stunting typically
associated with such traits. This suggests that genetic modification
could be an effective approach to developing drought-resistant rice
varieties. Fahad et al. (2015) noted that phytohormones play dual
roles in seed germination and subsequent plant growth, influencing
how rice responds to various stressors. Recent studies have focused
on developing improved drought-resistant cultivars, such as Hanyou
3, HY3, IR64, and IR50, which have shown resilience under drought
conditions while potentially mitigating CH,; emissions (Win
et al., 2021; Xu et al., 2015; Xu et al., 2016; Yagi et al., 2020). The
research conducted by Chirinda et al. (2018), Zheng et al. (2014),
Saud, Shi, et al. (2022), Fahad et al. (2015), Win et al. (2021), Xu et al.
(2015), Xu et al. (2016), and Yagi et al. (2020) provides a solid
foundation for selecting these rice varieties. Understanding genetic
variations and the role of plant hormones offers valuable insights into
how rice adapts to adverse conditions. Identifying optimal matches
between rice cultivars and diverse farming environments remains a
significant challenge, necessitating further investigation into the long-
term performance and emission impacts of these varieties.

3.6 | Modifying cropping regime

Direct-seeded rice (DSR) has emerged as a promising alternative to
conventional transplanted rice (PTR), particularly for its potential to
mitigate GHG emissions and adapt to diverse climate challenges
(Hussain et al., 2015). Research by Yagi et al. (2020) indicates that
direct seeding significantly reduces CH4 emissions compared to tra-
ditional transplanting. This reduction is attributed to altered flooding
patterns in DSR, which disrupt the anaerobic conditions conducive to
methane production, creating oxygen-rich environments that inhibit
methanogenesis. The System of Rice Intensification is another
effective strategy, demonstrating reductions in GWP while conserv-
ing water without sacrificing yields (Hasanah et al., 2019; Jain
et al., 2014). This balance can be linked to enhanced root growth and
more efficient water use, leading to lower GHG emissions.

Conversely, Linquist et al. (2015) found that a rice-rice (RR) rotation
resulted in higher cumulative emissions of CH4 and N,O compared to
a rice-soybean (RS) rotation, highlighting how crop rotation practices
can influence GHG emissions. In terms of environmental impacts,
Zhou et al. (2022) reported that the ratoon rice (RR) system con-
sistently had lower carbon, nitrogen, and water footprints compared
to the double-rice (DR) system. This difference is primarily due to the
higher irrigation requirements of the DR system, which contributes to
a larger blue carbon footprint. Gupta et al. (2016) found that adopting
a Zero Tillage-Wheat-Rice (ZTW + DSR) system significantly reduced
GHGI. This approach protects soil structure and microbial ecosystems
by minimising soil disturbance, creating conditions less favourable for
GHG production. The findings of Yagi et al. (2020), Hasanah et al.
(2019), Jain et al. (2014), Linquist et al. (2015), Zhou et al. (2022), and
Gupta et al. (2016) collectively highlight strategies that balance
emissions reduction with agronomic sustainability. Further investi-
gation into the mechanistic understanding of emissions dynamics
across different cropping regimes presents an opportunity for deeper

insights.

3.7 | Management of soil chemistry & biosphere

Understanding enzymes and microbiological organisms is crucial for
developing protocols that effectively modify soil chemistry, thereby
influencing the characteristics of denitrifying bacteria and methano-
gens. This modification can significantly reduce GHG emissions,
particularly N,O and CH, (Gupta et al., 2021). Malyan et al. (2021)
proposed that utilising Methylobacterium oryzae (MNL7), Azolla, and a
combination of Azolla with Blue-Green Algae (BGA) can mitigate
GHG emissions while increasing crop vyield. Their findings suggest
that these strategies can potentially reduce global warming risk by
15.2%-27.4%, concurrently enhancing agricultural productivity.
Mechanistically, Methylobacterium oryzae has methane-oxidising
capabilities, Azolla reduces N,O emissions through nitrogen fixa-
tion, and the symbiotic relationship with BGA enhances the soil
ecosystem. Wang et al. (2021) emphasised the need to minimise
nitrifying bacteria activity in the rhizosphere to improve the nitrogen
recovery rate from fertilisers. By reducing nitrogen losses from
nitrification and denitrification processes, this approach can effec-
tively redirect nitrogen toward plant nourishment and decrease its
conversion to N,O. This highlights the delicate balance involved in
regulating nitrogen movement within the rhizosphere, suggesting
that optimised fertiliser management can significantly reduce
nitrogen-related GHG emissions while improving nutrient use effi-
ciency. Recent research by Yulianingsih et al. (2021) further under-
scored the role of biofertilizers in reducing GHG emissions. Their
study found that combining rice straw with biofertilizers led to
reductions in CH,, N,O, and CO, emissions by 9.2%, 14.78%, and
27.68%, respectively, resulting in a decrease in GWP by 10.75%.
Ramessh et al. (2022) confirmed that biofertilizers like Azolla and
BGA significantly reduced methane emissions and enhanced soil

organic carbon levels. Sun et al. (2021) reported that co-applying
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biochar with biofertilizers diminished ammonia volatilisation and
overall GWP by 15.2%. The incorporation of biostimulants, such as
methane-derived microbial biostimulants investigated by Kumar et al.
(2024), has shown promise in enhancing crop yield while reducing
GHG emissions. Pathak et al. (2024) reviewed the benefits of cya-
nobacterial and algal biofertilizers as plant growth stimulants, noting
their positive effects on soil health and emissions reduction. Bashir
et al. (2021) discussed how plant growth stimulators and biostimu-
lants rich in nutrients and plant hormones can improve soil health and
decrease GHG emissions. Integrating beneficial microorganisms and
optimising fertiliser management can yield significant environmental
and agronomic benefits. Hiis et al. (2024) introduced bioaugmenta-
tion with Cloacibacterium sp. strain CB-01, which consumes N,O and
releases N,, achieving reductions of up to 95% in N,O emissions
when live bacteria were introduced alongside nitrogen fertilisers. This
innovative approach demonstrated effectiveness across various soil
types, showcasing the potential of microbial processes for large-scale
GHG mitigation in agriculture. Similarly, Daniels (2022) advocated for
regenerative practices in U.S. agriculture, such as improved manure
and fertiliser management, which can lower GHG emissions by
40%-50%, particularly targeting reductions in methane and N,O.
Overall, strategies for managing soil are interconnected and resonate
across various areas. Malyan et al. (2021) linked emissions reduction
with improved agricultural productivity, envisioning a future that is
both food-secure and ecologically balanced. Wang et al. (2021) ex-

plored the complexities of the rhizosphere, pointing toward efficient

fertiliser management practices that benefit both environmental

health and crop vyields.

4 | PERSPECTIVES

As the global population continues to grow, the demand for staple
crops like rice will intensify. This increased demand, coupled with the
challenges posed by climate change, necessitates a reevaluation of
rice cultivation practices. The future of rice farming must focus on
sustainability, innovation, and resilience (Figure 7). We will need to
produce more food on less land while using fewer resources. Sig-
nificant advancements in agricultural technology will be required,
including the development of high-yielding, stress-tolerant rice
varieties.

Precision agriculture, which leverages data and technology to
optimise inputs and maximise outputs, will play a crucial role in en-
hancing productivity. Additionally, integrating traditional knowledge
with modern farming techniques will be essential in creating a more
sustainable rice production system. Climate change is expected to
have profound effects on rice production, with altered precipitation
patterns, rising temperatures, and increased frequency of extreme
weather events. These changes will likely shift to the geographic
regions where rice can be grown and may reduce yields in some
areas. Adaptation strategies, such as altering planting dates, adopting

drought-resistant varieties, and improving irrigation efficiency, will be

PRECISION
AGRICULTURE TOOLS

Description: Adoption of precision
agriculture technologies, such as
drone-based monitoring and
automated  irrigation  systems,
becomes more widespread. These
tools help optimize water and
fertilizer use, reducing emissions by
minimizing  over-application  and
improving water management.

Impact: Precision application
reduces both methane (CH, and
nitrous oxide (N;O) emissions by
improving resource efficiency.

METHANE-INHIBITING
RICE CULTIVARS

Description: Commercial availability
and widespread adoption of
genetically modified or selectively
bred rice cultivars that emit less
methane during growth. These
cultivars are developed to thrive in
anaerobic conditions while
producing lower levels of methane.
Impact: Direct reduction in
methane emissions from rice
paddies, which is one of the largest
contributors  to GHGs in rice
cultivation,

ADVANCED SOIL POLICY SHIFTS
MONITORING TOWARDS SUSTAINABLE
TECHNOLOGIES PRACTICES

Description: Development and
deployment of advanced soil
monitoring technologies, such as
real-time soil gas sensors, enable
continuous  monitoring of GHG
emissions. These technologies allow
for immediate adjustments in
farming practices to mitigate
emissions.

Impact: Continuous monitoring and
adaptive management help
maintain low emission levels and
optimize the effectiveness of
mitigation strategies.

Description: Global and regional
policies mandate the use of low-
emission rice farming techniques,
supported by carbon  credits,
financial incentives, and stricter
regulations on GHG emissions from
agriculture.

Impact: Policy-driven changes lead
to widespread adoption of best
practices, contributing to
significant, scalable reductions in
GHG emissions across rice-
producing regions.

ENHANCED SOIL CARBON
SEQUESTRATION
PRACTICES

Description: Introduction of new
practices and amendments, such as
biochar application and cover
cropping, specifically designed to
increase soll organic  carbon
content and sequester carbon
dioxide {CO,!.

Impact: Increased carbon
sequestration in soils leads to long-
term reductions in atmospheric
CO; levels, complementing direct
GHG mitigation efforts.

LARGE-SCALE
IMPLEMENTATION OF
AWD

Description: AWD becomes a
standard practice globally,
supported by government policies
and subsidies. This water
management technique involves
periodic drying of rice fields,
significantly  reducing  methane
emissions.

Impact: Methane emissions are
reduced by up to 50% in regions
where AWD is implemented.

INTEGRATED MULTI-
BENEFIT FARMING
SYSTEMS

Description: Farming systems that
integrate multiple GHG reduction
strategies (eg. AWD. optimized
fertilizer use, organic amendments)
become the norm, supported by
interdisciplinary ~ research  and
extension services.

Impact: Combined strategies lead
to synergistic effects, resulting in
greater overall reductions in GHG
emissions,

P _a A _a §

BREAKTHROUGH IN
MICROBIAL SOIL
MANAGEMENT

Description: Innovations in  soil
microbiology enable the
manipulation of microbial
communities to enhance their role
in methane oxidation and nitrogen
cycling, thereby reducing methane
and nitrous oxide emissions from
rice fields.

Impact: Enhanced microbial activity
further reduces GHG emissions and
improves soil health, creating a
sustainable,  low-emission  rice
production system.

FIGURE 7 Future perspectives in GHGs emission reduction in rice cultivation. GHGs, greenhouse gas.
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critical in ensuring that rice cultivation remains viable in the face of

these challenges. As the demand for rice grows, so does the potential
for increased GHG emissions. However, this trajectory is not
inevitable.

As we look to the future of rice cultivation, the health of soil
biological communities will be paramount for sustainable practices.
Employing biological regulation strategies can enhance soil chemistry
and microbial diversity, leading to improved rice production while
simultaneously mitigating GHG emissions. By integrating beneficial
microorganisms, such as nitrogen-fixing bacteria and methanogens,
farmers can create a more resilient soil ecosystem. These organisms
play vital roles in nutrient cycling and can help reduce GHG emissions
through enhanced denitrification processes and improved nitrogen
recovery from fertilisers. Additionally, practices such as cover crop-
ping and the application of organic amendments can foster a thriving
soil microbiome, further enhancing soil structure and fertility. Ulti-
mately, prioritising soil biological health will contribute to a holistic
approach in rice farming, promoting productivity, sustainability, and
environmental stewardship.

Advances in precision agriculture, such as remote sensing,
drones, and Al, offer opportunities to optimise water management,
nutrient application, and pest control, further reducing emissions.
Developing climate-resilient rice varieties through genetic engineer-
ing and genomic selection will be crucial in adapting to climate
change. Integrated management practices, combining water-saving
technologies with improved fertiliser and residue management, can
synergistically cut emissions. Sustainable intensification—improving
yield while minimising environmental impacts—along with conserva-
tion tillage and soil carbon sequestration, will be key to balancing
food production with ecological sustainability. Policy and economic
incentives, including subsidies, carbon markets, and certification
schemes, are vital to promoting these practices. Education, capacity
building, and global collaboration will ensure the successful adoption
of these innovations and the development of tailored solutions for
different regions. Looking ahead, the vision for a sustainable rice
cultivation system involves a multifaceted approach that balances
productivity with environmental stewardship. This includes promot-
ing agroecological practices, enhancing biodiversity within rice fields,
and fostering collaboration between scientists, farmers, and policy-
makers. In the long term, the success of rice cultivation will depend
on our ability to innovate and adapt to changing conditions while
minimising the environmental impact of production. As we navigate
these challenges, ongoing research and adaptive strategies will be
essential in ensuring that rice remains a cornerstone of global food

security without compromising the health of our planet.

5 | CONCLUSION

The projected increase in population and rice demand in the future
has raised significant concerns about stabilising GHG emissions to
minimise the anticipated global climate change. In this comprehensive
review, we synthesised existing data to identify suitable crop

management practices in rice cultivation that can attenuate GHG
emissions. While limitations in data availability prevented us from
addressing all gases in each segment, we conducted a feasibility
analysis and evaluated the potential of various practices based on
their GWP, particularly focusing on CH4 and N,O emissions. Our
findings demonstrate that implementing crop management inter-
ventions can effectively mitigate the impact of rice cultivation on
global climate change. For instance, compared to traditional flooding
irrigation, alternative practices such as AWD, DC, and flooding and
mid-season drainage (CP) systems show mitigation potentials ranging
from 34% to 38%, 9% to 39%, 7% to 47.1%, respectively, when
considering CH4, CO,, and N,O emissions. Shifting from CT to no-
tillage NT and conservation tillage practices proves beneficial in GHG
mitigation as these practices effectively reduce overall GHG emis-
sions by 21% compared to traditional tillage practices. Proper man-
agement of straw through surface retention or mulching with a
combination of NPK fertiliser reduces GHGs by 27%, as well as the
conversion of biomass into biochar/compost instead of burning or
incorporation, can offset GHG emissions in rice fields. The use of
organic manures and optimised fertilisation techniques, such as deep
placement, replacing urea with ammonium sulphate, and employing
nitrification inhibitors, also offer efficient approaches to lower GHG
emissions. Among different cropping regimes, DSR appears to be the
most promising and environmentally friendly alternative to traditional
transplanting (TPR), exhibiting lower GWP. Adopting these proposed
mitigation options not only has the potential to sustain or improve
rice productivity and input use efficiency but also contributes to
addressing the challenges of food security. However, successful
implementation of these practices requires addressing social, eco-
nomic, educational, and political barriers. Future research should
focus on verifying the effectiveness of these practices across diverse
geographical zones and under varying circumstances to provide site-
specific mitigation strategies. Integrating geographic information
systems databases, yield, GHG emission models, and socioeconomic
information can enhance decision-making processes. Additionally,
establishing a standardised method for calculating GWP and con-
sidering factors beyond GHG emissions, such as cultural significance,
ecosystem services, food security, and human health, are crucial in

the context of global climate change and agriculture.
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